Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Neurotrauma Rep ; 4(1): 410-419, 2023.
Article in English | MEDLINE | ID: mdl-37360544

ABSTRACT

To optimally assess oscillatory phenomena within physiological variables, spectral domain transforms are used. A discrete Fourier transform (DFT) is one of the most common methods used to attain this spectral change. In traumatic brain injury (TBI), a DFT is used to derive more complicated methods of physiological assessment, particularly that of cerebrovascular reactivity (CVR). However, a practical application of a DFT will introduce various errors that need to be considered. This study will evaluate the pulse amplitude DFT derivation of intracranial pressure (AMP) to highlight how slight differences in DFT methodologies can impact calculations. Utilizing a high-frequency prospectively maintained data set of TBI patients with recorded arterial and intracranial blood pressure, various cerebral physiological aspects of interest were assessed using the DFT windowing methods of rectangular, Hanning, and Chebyshev. These included AMP, CVR indices (including the pressure reactivity and pulse amplitude index), and the optimal cerebral perfusion pressure (with all methods of CVR). The results of the different DFT-derived windowing methods were compared using the Wilcoxon signed-ranked test and histogram plots between individual patients and over the whole 100-patient cohort. The results for this analysis demonstrate that, overall and for grand average values, there were limited differences between the different DFT windowing techniques. However, there were individual patient outliers to whom the different methods resulted in noticeably different overall values. From this information, for derived indices utilizing a DFT in the assessment of AMP, there are limited differences within the resulting calculations for larger aggregates of data. However, when the amplitude of spectrally resolved response is important and needs to be robust in smaller moments in time, it is recommended to use a window that has amplitude accuracy (such as Chebyshev or flat-top).

2.
Front Physiol ; 14: 1124268, 2023.
Article in English | MEDLINE | ID: mdl-36755788

ABSTRACT

Introduction: The process of cerebral vessels maintaining cerebral blood flow (CBF) fairly constant over a wide range of arterial blood pressure is referred to as cerebral autoregulation (CA). Cerebrovascular reactivity is the mechanism behind this process, which maintains CBF through constriction and dilation of cerebral vessels. Traditionally CA has been assessed statistically, limited by large, immobile, and costly neuroimaging platforms. However, with recent technology advancement, dynamic autoregulation assessment is able to provide more detailed information on the evolution of CA over long periods of time with continuous assessment. Yet, to date, such continuous assessments have been hampered by low temporal and spatial resolution systems, that are typically reliant on invasive point estimations of pulsatile CBF or cerebral blood volume using commercially available technology. Methods: Using a combination of multi-channel functional near-infrared spectroscopy and non-invasive arterial blood pressure devices, we were able to create a system that visualizes CA metrics by converting them to heat maps drawn on a template of human brain. Results: The custom Python heat map module works in "offline" mode to visually portray the CA index per channel with the use of colourmap. The module was tested on two different mapping grids, 8 channel and 24 channel, using data from two separate recordings and the Python heat map module was able read the CA indices file and represent the data visually at a preselected rate of 10 s. Conclusion: The generation of the heat maps are entirely non-invasive, with high temporal and spatial resolution by leveraging the recent advances in NIRS technology along with niABP. The CA mapping system is in its initial stage and development plans are ready to transform it from "offline" to real-time heat map generation.

3.
J Neurotrauma ; 40(11-12): 1098-1111, 2023 06.
Article in English | MEDLINE | ID: mdl-36047825

ABSTRACT

Impaired cerebrovascular reactivity has emerged as an important associate with poor long-term outcome after moderate/severe traumatic brain injury (TBI). However, our understanding of what drives or modulates the degree of impaired cerebrovascular function remains poor. Age and biological sex remain important modifiers of cerebrovascular function in health and disease, yet their impact on cerebrovascular reactivity after TBI remains unclear. The aim of this study was to explore subgroup responses based on age and biological sex on cerebral physiology. Data from 283 TBI patients from the CAnadian High Resolution TBI (CAHR-TBI) Research Collaborative were evaluated. Cerebrovascular reactivity was determined using high-frequency cerebral physiology for the derivation of three intracranial pressure (ICP)-based indices: 1) pressure reactivity index (PRx)-correlation between ICP and mean arterial pressure (MAP); 2) pulse amplitude index (PAx)-correlation between pulse amplitude of ICP (AMP) and MAP; and 3) RAC-correlation between AMP and cerebral perfusion pressure (CPP). Insult burden (% time above clinically defined thresholds) were calculated for these indices. These cerebral physiology indices were studied for their relationship with age via linear regression, age trichotomization (< 40, 40 - 60, > 60), and decades of age (< 30, 30-39, 40-49, 50-59, 60-69, > 69) schemes. Similarly, differences based on biological sex were assessed. A statistically significant positive linear correlation was found between PAx, RAC, and age. In corollary, a statistically significant relationship was found between increasing age on trichotomized and decades of age analysis with PAx and RAC measures. PRx failed to demonstrate such relationships to advancing age. There was no clear difference in cerebrovascular reactivity profiles between biological sex categories. These findings suggest that AMP-based cerebrovascular reactivity indices may be better positioned to detect impairment in TBI patients with advancing age. Further investigation into the utility of PAx and RAC is required, as they may prove useful for certain subgroups of patients.


Subject(s)
Brain Injuries, Traumatic , Humans , Canada/epidemiology , Intracranial Pressure/physiology , Heart Rate , Cerebrovascular Circulation/physiology , Retrospective Studies
4.
Acta Neurochir (Wien) ; 164(12): 3107-3118, 2022 12.
Article in English | MEDLINE | ID: mdl-36156746

ABSTRACT

BACKGROUND: Impaired cerebrovascular reactivity following moderate/severe traumatic brain injury (TBI) has emerged as a key potential driver of morbidity and mortality. However, the major contributions to the literature so far have been solely focused on single point measures of long-term outcome. Therefore, it remains unknown whether cerebrovascular reactivity impairment, during the acute phase of TBI, is associated with failure to improve in outcome across time. METHODS: Cerebrovascular reactivity was measured using three intracranial pressure-based surrogate metrics. For each patient, % time spent above various literature-defined thresholds was calculated. Patients were dichotomized based on outcome transition into Improved vs Not Improved between 1 and 3 months, 3 and 6 months, and 1 and 6 months, based on the Glasgow Outcome Scale-Extended (GOSE). Univariate and multivariable logistic regression analyses were performed, adjusting for the International Mission for Prognosis and Analysis of Clinical Trials (IMPACT) variables. RESULTS: Seventy-eight patients from the Winnipeg Acute TBI Database were included in this study. On univariate logistic regression analysis, higher % time with cerebrovascular reactivity metrics above clinically defined thresholds was associated with a lack of clinical improvement between 1 and 3 months and 1 and 6 months post injury (p < 0.05). These relationships held true on multivariable logistic regression analysis. CONCLUSION: Our study demonstrates that impaired cerebrovascular reactivity, during the acute phase of TBI, is associated with failure to improve clinically over time. These preliminary findings highlight the significance that cerebrovascular reactivity monitoring carries in outcome recovery association in moderate/severe TBI.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Adult , Humans , Brain Injuries, Traumatic/therapy , Glasgow Outcome Scale , Intracranial Pressure , Benchmarking
5.
Front Physiol ; 13: 934731, 2022.
Article in English | MEDLINE | ID: mdl-35910568

ABSTRACT

Cerebral blood flow (CBF) is an important physiologic parameter that is vital for proper cerebral function and recovery. Current widely accepted methods of measuring CBF are cumbersome, invasive, or have poor spatial or temporal resolution. Near infrared spectroscopy (NIRS) based measures of cerebrovascular physiology may provide a means of non-invasively, topographically, and continuously measuring CBF. We performed a systematically conducted scoping review of the available literature examining the quantitative relationship between NIRS-based cerebrovascular metrics and CBF. We found that continuous-wave NIRS (CW-NIRS) was the most examined modality with dynamic contrast enhanced NIRS (DCE-NIRS) being the next most common. Fewer studies assessed diffuse correlation spectroscopy (DCS) and frequency resolved NIRS (FR-NIRS). We did not find studies examining the relationship between time-resolved NIRS (TR-NIRS) based metrics and CBF. Studies were most frequently conducted in humans and animal studies mostly utilized large animal models. The identified studies almost exclusively used a Pearson correlation analysis. Much of the literature supported a positive linear relationship between changes in CW-NIRS based metrics, particularly regional cerebral oxygen saturation (rSO2), and changes in CBF. Linear relationships were also identified between other NIRS based modalities and CBF, however, further validation is needed.

6.
Intensive Care Med Exp ; 10(1): 33, 2022 Aug 13.
Article in English | MEDLINE | ID: mdl-35962913

ABSTRACT

BACKGROUND: Impaired cerebral autoregulation has been linked with worse outcomes, with literature suggesting that current therapy guidelines fail to significantly impact cerebrovascular reactivity. The cerebral oximetry index (COx_a) is a surrogate measure of cerebrovascular reactivity which can in theory be obtained non-invasively using regional brain tissue oxygen saturation and arterial blood pressure. The goal of this study was to assess the relationship between objectively measured depth of sedation through BIS and autoregulatory capacity measured through COx_a. METHODS: In a prospectively maintained observational study, we collected continuous regional brain tissue oxygen saturation, intracranial pressure, arterial blood pressure and BIS in traumatic brain injury patients. COx_a was obtained using the Pearson's correlation between regional brain tissue oxygen saturation and arterial blood pressure and ranges from - 1 to 1 with higher values indicating impairment of cerebrovascular reactivity. Using BIS values and COx_a, a curve-fitting method was applied to determine the minimum value for the COx_a. The associated BIS value with the minimum COx_a is called BISopt. This BISopt was both visually and algorithmically determined, which were compared and assessed over the whole dataset. RESULTS: Of the 42 patients, we observed that most had a parabolic relationship between BIS and COx_a. This suggests a potential "optimal" depth of sedation where COx_a is the most intact. Furthermore, when comparing the BISopt algorithm with visual inspection of BISopt, we obtained similar results. Finally, BISopt % yield (determined algorithmically) appeared to be independent from any individual sedative or vasopressor agent, and there was agreement between BISopt found with COx_a and the pressure reactivity index (another surrogate for cerebrovascular reactivity). CONCLUSIONS: This study suggests that COx_a is capable of detecting disruption in cerebrovascular reactivity which occurs with over-/under-sedation, utilizing a non-invasive measure of determination and assessment. This technique may carry implications for tailoring sedation in patients, focusing on individualized neuroprotection.

7.
Front Neurol ; 13: 872731, 2022.
Article in English | MEDLINE | ID: mdl-35557627

ABSTRACT

The process of cerebral vessels regulating constant cerebral blood flow over a wide range of systemic arterial pressures is termed cerebral autoregulation (CA). Static and dynamic autoregulation are two types of CA measurement techniques, with the main difference between these measures relating to the time scale used. Static autoregulation looks at the long-term change in blood pressures, while dynamic autoregulation looks at the immediate change. Techniques that provide regularly updating measures are referred to as continuous, whereas intermittent techniques take a single at point in time. However, a technique being continuous or intermittent is not implied by if the technique measures autoregulation statically or dynamically. This narrative review outlines technical aspects of non-invasive and minimally-invasive modalities along with providing details on the non-invasive and minimally-invasive measurement techniques used for CA assessment. These non-invasive techniques include neuroimaging methods, transcranial Doppler, and near-infrared spectroscopy while the minimally-invasive techniques include positron emission tomography along with magnetic resonance imaging and radiography methods. Further, the advantages and limitations are discussed along with how these methods are used to assess CA. At the end, the clinical considerations regarding these various techniques are highlighted.

8.
Crit Care Explor ; 4(3): e0656, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35265854

ABSTRACT

BACKGROUND: We have sought to develop methodology for deriving optimal bispectral index (BIS) values (BISopt) for patients with moderate/severe traumatic brain injury, using continuous monitoring of cerebrovascular reactivity and bispectral electroencephalography. METHODS: Arterial blood pressure, intracranial pressure, and BIS (a bilateral measure that is associated with sedation state) were continuously recorded. The pressure reactivity index, optimal cerebral perfusion pressure (CPPopt), and BISopt were calculated. Using BIS values and the pressure reactivity index, a curve fitting method was applied to determine the minimum value for the pressure reactivity index thus giving the BISopt. RESULTS AND CONCLUSIONS: Identification of BISopt was possible in all of the patients, with both visual inspection of data and using our method of BISopt determination, demonstrating a similarity of median values of 44.62 (35.03-59.98) versus 48 (39.75-57.50) (p = 0.1949). Furthermore, our method outperformed common CPPopt curve fitting methods applied to BISopt with improved percent (%) yields on both the left side 52.1% (36.3-72.4%) versus 31.2% (23.0-48.9%) (p < 0.0001) and the right side 54.1% (35.95-75.9%) versus 33.5% (12.5-47.9%) (p < 0.0001). The BIS values and BISopt were compared with cerebral perfusion pressure, mean arterial pressure, and CPPopt. The results indicated that BISopt's impact on pressure reactivity was distinct from CPPopt, cerebral perfusion pressure, or mean arterial pressure. Real-time BISopt can be derived from continuous physiologic monitoring of patients with moderate/severe traumatic brain injury. This BISopt value appears to be unassociated with arterial blood pressure or CPPopt, supporting its role as a novel physiologic metric for evaluating cerebral autoregulation. BISopt management to optimize cerebrovascular pressure reactivity should be the subject of future studies in moderate/severe traumatic brain injury.

9.
Neurotrauma Rep ; 3(1): 44-56, 2022.
Article in English | MEDLINE | ID: mdl-35112107

ABSTRACT

To date, there has been limited literature exploring the association between age and sex with cerebrovascular reactivity (CVR) in moderate/severe traumatic brain injury (TBI). Given the known link between age, sex, and cerebrovascular function, knowledge of the impacts on continuously assessed CVR is critical for the development of future therapeutics. We conducted a scoping review of the literature for studies that had a direct statistical interrogation of the relationship between age, sex, and continuous intracranial pressure (ICP)-based indices of CVR in moderate/severe TBI. The ICP-based indices researched included: pressure reactivity index (PRx), pulse amplitude index (PAx), and RAC. MEDLINE, BIOSIS, EMBASE, SCOPUS, Global Health, and the Cochrane library were searched from inception to June 2021 for relevant articles. A total of 10 original studies fulfilled our inclusion criteria. Nine of the articles documented a correlation between advanced age and worse CVR, with eight using PRx (2192 total patients), three using PAx (978 total patients), and one using RAC (358 total patients), p < 0.05; R ranging from 0.17 to 0.495 for all indices across all studies. Three articles (1256 total patients) displayed a correlation between biological sex and PRx, with females trending towards higher PRx values (p < 0.05) in the limited available literature. However, no literature exists comparing PAx or RAC with biological sex. Findings showed that aging was associated with impaired CVR. We observed a trend between female sex and worse PRx values, but the literature was limited and statistical significance was borderline. The identified studies were few in number, carried significant population heterogeneity, and utilized grand averaging of large epochs of physiology during statistical comparisons with age and biological sex. Because of the heterogeneous nature of TBI populations and limited focus on the effects of age and sex on outcomes in TBI, it is challenging to highlight the differences between the indices and patient age groups and sex. The largest study showing an association between PRx and age was done by Zeiler and colleagues, where 165 patients were studied noting that patients with a mean PRx value above zero had a mean age above 51.4 years versus a mean age of 41.4 years for those with a mean PRx value below zero (p = 0.0007). The largest study showing an association between PRx and sex was done by Czosnyka and colleagues, where 469 patients were studied noting that for patients <50 years of age, PRx was worse in females (0.11 ± 0.047) compared to males (0.044 ± 0.031), p < 0.05. The findings from these 10 studies provide preliminary data, but are insufficient to definitively characterize the impact of age and sex on CVR in moderate/severe TBI. Future work in the field should focus on the impact of age and sex on multi-modal cerebral physiological monitoring.

10.
Front Netw Physiol ; 2: 837860, 2022.
Article in English | MEDLINE | ID: mdl-36926091

ABSTRACT

There has been little change in morbidity and mortality in traumatic brain injury (TBI) in the last 25 years. However, literature has emerged linking impaired cerebrovascular reactivity (a surrogate of cerebral autoregulation) with poor outcomes post-injury. Thus, cerebrovascular reactivity (derived through the pressure reactivity index; PRx) is emerging as an important continuous measure. Furthermore, recent literature indicates that autonomic dysfunction may drive impaired cerebrovascular reactivity in moderate/severe TBI. Thus, to improve our understanding of this association, we assessed the physiological relationship between PRx and the autonomic variables of heart rate variability (HRV), blood pressure variability (BPV), and baroreflex sensitivity (BRS) using time-series statistical methodologies. These methodologies include vector autoregressive integrative moving average (VARIMA) impulse response function analysis, Granger causality, and hierarchical clustering. Granger causality testing displayed inconclusive results, where PRx and the autonomic variables had varying bidirectional relationships. Evaluating the temporal profile of the impulse response function plots demonstrated that the autonomic variables of BRS, ratio of low/high frequency of HRV and very low frequency HRV all had a strong relation to PRx, indicating that the sympathetic autonomic response may be more closely linked to cerebrovascular reactivity, then other variables. Finally, BRS was consistently associated with PRx, possibly demonstrating a deeper relationship to PRx than other autonomic measures. Taken together, cerebrovascular reactivity and autonomic response are interlinked, with a bidirectional impact between cerebrovascular reactivity and circulatory autonomics. However, this work is exploratory and preliminary, with further study required to extract and confirm any underlying relationships.

11.
Neurotrauma Rep ; 2(1): 488-501, 2021.
Article in English | MEDLINE | ID: mdl-34901944

ABSTRACT

Age and biological sex are two potential important modifiers of cerebrovascular reactivity post-traumatic brain injury (TBI) requiring close evaluation for potential subgroup responses. The goal of this study was to provide a preliminary exploratory analysis of the impact of age and biological sex on measures of cerebrovascular function in moderate/severe TBI. Forty-nine patients from the prospectively maintained TBI database at the University of Manitoba with archived high-frequency digital cerebral physiology were evaluated. Cerebrovascular reactivity indices were derived as follows: PRx (correlation between intracranial pressure [ICP] and mean arterial pressure [MAP]), PAx (correlation between pulse amplitude of ICP [AMP] and MAP), and RAC (correlation between AMP and cerebral perfusion pressure [CPP]). Time above clinically significant thresholds for each index was calculated over different periods of the acute intensive care unit stay. The association between PRx, PAx, and RAC measures with age was assessed using linear regression, and an age trichotomization scheme (<40, 40-60, >60) using Kruskal-Wallis testing. Similarly, association with biological sex was tested using Mann-Whitney U testing. Biological sex did not demonstrate an impact on any measures of cerebrovascular reactivity. Linear regression between age and PAx and RAC demonstrated a statistically significant positive linear relationship. Median PAx and RAC measures between trichotomized age categories demonstrated statistically significant increases with advancing age. The PRx failed to demonstrate any statistically significant relationship with age in this cohort, suggesting that in elderly patients with controlled ICP, PAx and RAC may be better metrics for detecting impaired cerebrovascular reactivity. Biological sex appears to not be associated with differences in cerebrovascular reactivity in this cohort. The PRx performed the worst in detecting impaired cerebrovascular reactivity in those with advanced age, where PAx and RAC appear to have excelled. Future work is required to validate these findings and explore the utility of different cerebrovascular reactivity indices.

12.
Front Pharmacol ; 12: 719501, 2021.
Article in English | MEDLINE | ID: mdl-34803673

ABSTRACT

Multimodal monitoring has been gaining traction in the critical care of patients following traumatic brain injury (TBI). Through providing a deeper understanding of the individual patient's comprehensive physiologic state, or "physiome," following injury, these methods hold the promise of improving personalized care and advancing precision medicine. One of the modalities being explored in TBI care is near-infrared spectroscopy (NIRS), given it's non-invasive nature and ability to interrogate microvascular and tissue oxygen metabolism. In this narrative review, we begin by discussing the principles of NIRS technology, including spatially, frequency, and time-resolved variants. Subsequently, the applications of NIRS in various phases of clinical care following TBI are explored. These applications include the pre-hospital, intraoperative, neurocritical care, and outpatient/rehabilitation setting. The utility of NIRS to predict functional outcomes and evaluate dysfunctional cerebrovascular reactivity is also discussed. Finally, future applications and potential advancements in NIRS-based physiologic monitoring of TBI patients are presented, with a description of the potential integration with other omics biomarkers.

13.
Front Neurol ; 12: 692207, 2021.
Article in English | MEDLINE | ID: mdl-34484100

ABSTRACT

Background: Current understanding of the impact that sedative agents have on neurovascular coupling, cerebral blood flow (CBF) and cerebrovascular response remains uncertain. One confounding factor regarding the impact of sedative agents is the depth of sedation, which is often determined at the bedside using clinical examination scoring systems. Such systems do not objectively account for sedation depth at the neurovascular level. As the depth of sedation can impact CBF and cerebral metabolism, the need for objective assessments of sedation depth is key. This is particularly the case in traumatic brain injury (TBI), where emerging literature suggests that cerebrovascular dysfunction dominates the burden of physiological dysfunction. Processed electroencephalogram (EEG) entropy measures are one possible solution to objectively quantify depth of sedation. Such measures are widely employed within anesthesia and are easy to employ at the bedside. However, the association between such EEG measures and cerebrovascular response remains unclear. Thus, to improve our understanding of the relationship between objectively measured depth of sedation and cerebrovascular response, we performed a scoping review of the literature. Methods: A systematically conduced scoping review of the existing literature on objectively measured sedation depth and CBF/cerebrovascular response was performed, search multiple databases from inception to November 2020. All available literature was reviewed to assess the association between objective sedation depth [as measured through processed electroencephalogram (EEG)] and CBF/cerebral autoregulation. Results: A total of 13 articles, 12 on adult humans and 1 on animal models, were identified. Initiation of sedation was found to decrease processed EEG entropy and CBF/cerebrovascular response measures. However, after this initial drop in values there is a wide range of responses in CBF seen. There were limited statistically reproduceable associations between processed EEG and CBF/cerebrovascular response. The literature body remains heterogeneous in both pathological states studied and sedative agent utilized, limiting the strength of conclusions that can be made. Conclusions: Conclusions about sedation depth, neurovascular coupling, CBF, and cerebrovascular response are limited. Much further work is required to outline the impact of sedation on neurovascular coupling.

14.
Front Big Data ; 4: 689358, 2021.
Article in English | MEDLINE | ID: mdl-34514379

ABSTRACT

Introduction: As real time data processing is integrated with medical care for traumatic brain injury (TBI) patients, there is a requirement for devices to have digital output. However, there are still many devices that fail to have the required hardware to export real time data into an acceptable digital format or in a continuously updating manner. This is particularly the case for many intravenous pumps and older technological systems. Such accurate and digital real time data integration within TBI care and other fields is critical as we move towards digitizing healthcare information and integrating clinical data streams to improve bedside care. We propose to address this gap in technology by building a system that employs Optical Character Recognition through computer vision, using real time images from a pump monitor to extract the desired real time information. Methods: Using freely available software and readily available technology, we built a script that extracts real time images from a medication pump and then processes them using Optical Character Recognition to create digital text from the image. This text was then transferred to an ICM + real-time monitoring software in parallel with other retrieved physiological data. Results: The prototype that was built works effectively for our device, with source code openly available to interested end-users. However, future work is required for a more universal application of such a system. Conclusion: Advances here can improve medical information collection in the clinical environment, eliminating human error with bedside charting, and aid in data integration for biomedical research where many complex data sets can be seamlessly integrated digitally. Our design demonstrates a simple adaptation of current technology to help with this integration.

15.
Front Pharmacol ; 12: 690921, 2021.
Article in English | MEDLINE | ID: mdl-34295251

ABSTRACT

Background: Disruption in cerebrovascular reactivity following traumatic brain injury (TBI) is a known phenomenon that may hold prognostic value and clinical relevance. Ultimately, improved knowledge of this process and more robust means of continuous assessment may lead to advances in precision medicine following TBI. One such method is transcranial Doppler (TCD), which has been employed to evaluate cerebrovascular reactivity following injury utilizing a continuous time-series approach. Objective: The present study undertakes a scoping review of the literature on the association of continuous time-domain TCD based indices of cerebrovascular reactivity, with global functional outcomes, cerebral physiologic correlates, and imaging evidence of lesion change. Design: Multiple databases were searched from inception to November 2020 for articles relevant to the association of continuous time-domain TCD based indices of cerebrovascular reactivity with global functional outcomes, cerebral physiologic correlates, and imaging evidence of lesion change. Results: Thirty-six relevant articles were identified. There was significant evidence supporting an association with continuous time-domain TCD based indices and functional outcomes following TBI. Indices based on mean flow velocity, as measured by TCD, were most numerous while more recent studies point to systolic flow velocity-based indices encoding more prognostic utility. Physiologic parameters such as intracranial pressure, cerebral perfusion pressure, Carbon Dioxide (CO2) reactivity as well as more established indices of cerebrovascular reactivity have all been associated with these TCD based indices. The literature has been concentrated in a few centres and is further limited by the lack of multivariate analysis. Conclusions: This systematic scoping review of the literature identifies that there is a substantial body of evidence that cerebrovascular reactivity as measured by time-domain TCD based indices have prognostic utility following TBI. Indices based on mean flow velocities have the largest body of literature for their support. However, recent studies indicate that indices based on systolic flow velocities may contain the most prognostic utility and more closely follow more established measures of cerebrovascular reactivity. To a lesser extent, the literature supports some associations between these indices and cerebral physiologic parameters. These indices provide a more complete picture of the patient's physiome following TBI and may ultimately lead to personalized and precise clinical care. Further validation in multi-institution studies is required before these indices can be widely adopted clinically.

16.
Curr Neurol Neurosci Rep ; 21(5): 19, 2021 03 10.
Article in English | MEDLINE | ID: mdl-33694085

ABSTRACT

PURPOSE OF REVIEW: Traumatic brain injury (TBI) has a significant burden of disease worldwide and outcomes vary widely. Current prognostic tools fail to fully account for this variability despite incorporating clinical, radiographic, and biochemical data. This variance could possibly be explained by genotypic differences in the patient population. In this review, we explore single nucleotide polymorphism (SNP) TBI outcome association studies. RECENT FINDINGS: In recent years, SNP association studies in TBI have focused on global, neurocognitive/neuropsychiatric, and physiologic outcomes. While the APOE gene has been the most extensively studied, other genes associated with neural repair, cell death, the blood-brain barrier, cerebral edema, neurotransmitters, mitochondria, and inflammatory cytokines have all been examined for their association with various outcomes following TBI. The results have been mixed across studies and even within genes. SNP association studies provide insight into mechanisms by which outcomes may vary following TBI. Their individual clinical utility, however, is often limited by small sample sizes and poor reproducibility. In the future, they may serve as hypothesis generating for future therapeutic targets.


Subject(s)
Brain Edema , Brain Injuries, Traumatic , Blood-Brain Barrier , Brain Injuries, Traumatic/genetics , Humans , Polymorphism, Single Nucleotide/genetics , Reproducibility of Results
17.
J Neurotrauma ; 38(16): 2206-2220, 2021 08 15.
Article in English | MEDLINE | ID: mdl-33554739

ABSTRACT

Since its creation in the 1980s, transcranial Doppler (TCD) has provided a method of non-invasively monitoring cerebral physiology and has become an invaluable tool in neurocritical care. In this narrative review, we examine the role TCD has in the management of the moderate and severe traumatic brain injury (TBI) patient. We examine the principles of TCD and the ways in which it has been applied to gain insight into cerebral physiology following TBI, as well as explore the clinical evidence supporting these applications. Its usefulness as a tool to non-invasively determine intracranial pressure, detect post-traumatic vasospasm, predict patient outcome, and assess the state of cerebral autoregulation are all explored.


Subject(s)
Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/physiopathology , Ultrasonography, Doppler, Transcranial , Cerebrovascular Circulation/physiology , Humans , Intracranial Pressure/physiology
18.
Neurocrit Care ; 34(1): 325-335, 2021 02.
Article in English | MEDLINE | ID: mdl-32468328

ABSTRACT

Current intensive care unit (ICU) treatment strategies for traumatic brain injury (TBI) care focus on intracranial pressure (ICP)- and cerebral perfusion pressure (CPP)-directed therapeutics, dictated by guidelines. Impaired cerebrovascular reactivity in moderate/severe TBI is emerging as a major associate with poor outcome and appears to dominate the landscape of physiologic derangement over the course of a patient's ICU stay. Within this article, we review the literature on the known drivers of impaired cerebrovascular reactivity in adult TBI, highlight the current knowledge surrounding the impact of guideline treatment strategies on continuously monitored cerebrovascular reactivity, and discuss current treatment paradigms for impaired reactivity. Finally, we touch on the areas of future research, as we strive to develop specific therapeutics for impaired cerebrovascular reactivity in TBI. There exists limited literature to suggest advanced age, intracranial injury patterns of diffuse injury, and sustained ICP elevations may drive impaired cerebrovascular reactivity. To date, the literature suggests there is a limited impact of such ICP/CPP guideline-based therapies on cerebrovascular reactivity, with large portions of a given patients ICU period spent with impaired cerebrovascular reactivity. Emerging treatment paradigms focus on the targeting individualized CPP and ICP thresholds based on cerebrovascular reactivity, without directly targeting the pathways involved in its dysfunction. Further work involved in uncovering the molecular pathways involved in impaired cerebrovascular reactivity is required, so that we can develop therapeutics directed at its prevention and treatment.


Subject(s)
Brain Injuries, Traumatic , Intracranial Hypertension , Adult , Brain Injuries, Traumatic/therapy , Cerebrovascular Circulation , Humans , Intracranial Pressure , Monitoring, Physiologic , Retrospective Studies
19.
Neurotrauma Rep ; 2(1): 639-659, 2021.
Article in English | MEDLINE | ID: mdl-35018365

ABSTRACT

Over a wide range of systemic arterial pressures, cerebral blood flow (CBF) is regulated fairly constantly by the cerebral vessels in a process termed cerebral autoregulation (CA), which is depicted by the Lassen autoregulatory curve. After traumatic brain injury (TBI), CA can get impaired and these impairments manifest in changes of the Lassen autoregulatory curve. Continuous surrogate metrics of pressure-based CA, termed cerebrovascular reactivity (CVR) metrics, evaluate the relationship between slow vasogenic fluctuations in a driving pressure for cerebral blood flow, and the most commonly studied and utilized measures are based in the time domain and have been increasingly applied in bedside TBI care and have sparked the investigation of individualized cerebral perfusion pressure targets. However, not all CVR metrics have been validated as true measures of autoregulation in the pre-clinical setting. We reviewed all available pre-clinical animal literature that assessed the association between continuous time-domain metrics of CVR and some aspect of the Lassen autoregulatory curve. All 15 articles found associated the evaluated continuous metrics to the lower limit of autoregulation curve whereas none looked at the upper limit. Most of the evaluated metrics showed the ability to discriminate the lower limit of autoregulation with various methods of perturbation. Further work is required to evaluate the utility of such surrogate measures against the upper limit of autoregulation, while also providing validation to the existing literature supporting specific indices and their ability to discriminate the lower limit.

20.
Neurotrauma Rep ; 1(1): 157-168, 2020.
Article in English | MEDLINE | ID: mdl-33274344

ABSTRACT

The impact of vasopressor and sedative drugs on cerebrovascular reactivity in traumatic brain injury (TBI) remains unclear. The aim of this study was to evaluate the impact of changes of doses of commonly administered sedation (i.e., propofol, fentanyl, and ketamine) and vasopressor agents (i.e., norepinephrine [NE], phenylephrine [PE], and vasopressin[VSP]) on cerebrovascular reactivity and compensatory reserve in patients with moderate/severe TBI. Using the Winnipeg Acute TBI Database, we identified 38 patients with more than 1000 distinct changes of infusion rates and more than 500 h of paired drug infusion/physiology data. Cerebrovascular reactivity was assessed using pressure reactivity index (PRx) and cerebral compensatory reserve was assessed using RAP (the correlation [R] between pulse amplitude of intracranial pressure [ICP; A] and ICP [P]). We evaluated the data in two phases. First, we assessed the relationship between mean hourly dose of medication and its relation to both mean hourly index values, and time spent above a given index threshold. Second, we evaluated time-series data for each individual dose change per medication, assessing for a statistically significant change in PRx and RAP metrics. The results of the analysis confirmed that, overall, the mean hourly dose of sedative (propofol, fentanyl, and ketamine) and vasopressor (NE, PE, and VSP) agents does not impact hourly cerebrovascular reactivity or compensatory reserve measures. Similarly, incremental dose changes in these medications in general do not lead to significant changes in cerebrovascular reactivity or compensatory reserve. For propofol with incremental dose increases, in situations where PRx is intact (i.e., PRx <0 prior), a statistically significant increase in PRx was seen. However, this may not indicate deteriorating cerebrovascular reactivity as the final PRx (∼0.05) may still be considered to be intact cerebrovascular reactivity. As such, this finding with regards to propofol remains "weak." This study indicates that commonly administered sedative and vasopressor agents with incremental dosing changes have no clinically significant influence on cerebrovascular reactivity or compensatory reserve in TBI. These results should be considered preliminary, requiring further investigation.

SELECTION OF CITATIONS
SEARCH DETAIL
...