Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Qual ; 41(6): 2024-32, 2012.
Article in English | MEDLINE | ID: mdl-23128759

ABSTRACT

Riparian wetland creation and restoration have been proposed to mediate nitrate-nitrogen (NO-N) pollution from nonpoint agricultural runoff. Denitrification by anaerobic microbial communities in wetland soils is believed to be one of the main sinks for NO-N as it flows through wetlands. Denitrification rates were quantified using an in situ acetylene inhibition technique at 12 locations in three wetland/riverine sites at the Olentangy River Wetland Research Park, Columbus, Ohio for 1 yr. Sites included two created flow-through experimental wetlands and one bottomland forest/river-edge site. Points were spatially distributed at inflows, center, and outflows of the two wetlands to include permanently flooded open water, intermittently flooded transitions, and upland. Annual denitrification rates (median [mean]) were significantly higher ( < 0.001) in permanently flooded zones of the wetlands (266 [415] µg NO-N m h) than in shallower transition zones (58 [37.5] µg NO-N m h). Median wetland transition zone denitrification rates did not differ significantly ( ≥ 0.05) from riverside or upland sites. Denitrification rates peaked in spring; for the months of April through June, median denitrification rates ranged from 240 to 1010 µg NO-N m h in the permanently flooded zones. A N mass balance analysis showed that surface water flux of N was reduced by 57% as water flowed through the wetland, but only about 3.5% of the N inflow was permanently removed through denitrification. Most N was probably lost through groundwater seepage. Comparison with denitrification rates measured previously in these wetlands suggests that these rates have remained steady over the past 4 to 5 yr.


Subject(s)
Nitrogen/chemistry , Rivers/chemistry , Wetlands , Environmental Monitoring , Ohio , Soil/chemistry , Temperature , Time Factors , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...