Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cytometry A ; 103(7): 563-574, 2023 07.
Article in English | MEDLINE | ID: mdl-36866503

ABSTRACT

Förster resonance energy transfer (FRET) is a radiationless interaction between a donor and an acceptor whose distance dependence makes it a sensitive tool for studying the oligomerization and the structure of proteins. When FRET is determined by measuring the sensitized emission of the acceptor, a parameter characterizing the ratio of detection efficiencies of an excited acceptor versus an excited donor is invariably involved in the formalism. For FRET measurements involving fluorescent antibodies or other external labels, this parameter, designated by α, is usually determined by comparing the intensity of a known number of donors and acceptors in two independent samples leading to a large statistical variability if the sample size is small. Here, we present a method that improves precision by applying microbeads with a calibrated number of antibody binding sites and a donor-acceptor mixture in which donors and acceptors are present in a certain, experimentally determined ratio. A formalism is developed for determining α and the superior reproducibility of the proposed method compared to the conventional approach is demonstrated. Since the novel methodology does not require sophisticated calibration samples or special instrumentation, it can be widely applied for the quantification of FRET experiments in biological research.


Subject(s)
Fluorescence Resonance Energy Transfer , Fluorescence Resonance Energy Transfer/methods , Reproducibility of Results
2.
Int J Mol Sci ; 24(2)2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36674720

ABSTRACT

PAF and related antifungal proteins are promising antimicrobial agents. They have highly stable folds around room temperature due to the presence of 3-4 disulfide bonds. However, unfolded states persist and contribute to the thermal equilibrium in aqueous solution, and low-populated states might influence their biological impact. To explore such equilibria during dimethyl sulfoxide (DMSO)-induced chemical unfolding, we studied PAF and its inactive variant PAFD19S using nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC). According to the NMR monitoring at 310 K, the folded structures disappear above 80 v/v% DMSO concentration, while the unfolding is completely reversible. Evaluation of a few resolved peaks from viscosity-compensated 15N-1H HSQC spectra of PAF yielded ∆G = 23 ± 7 kJ/M as the average value for NMR unfolding enthalpy. The NMR-based structures of PAF and the mutant in 50 v/v% DMSO/H2O mixtures were more similar in the mixed solvents then they were in water. The 15N NMR relaxation dynamics in the same mixtures verified the rigid backbones of the NMR-visible fractions of the proteins; still, enhanced dynamics around the termini and some loops were observed. DSC monitoring of the Tm melting point showed parabolic dependence on the DMSO molar fraction and suggested that PAF is more stable than the inactive PAFD19S. The DSC experiments were irreversible due to the applied broad temperature range, but still suggestive of the endothermic unfolding of PAF.


Subject(s)
Antifungal Agents , Dimethyl Sulfoxide , Dimethyl Sulfoxide/pharmacology , Dimethyl Sulfoxide/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Calorimetry, Differential Scanning , Disulfides/chemistry , Proteins , Magnetic Resonance Spectroscopy , Water , Thermodynamics , Protein Denaturation , Protein Unfolding
SELECTION OF CITATIONS
SEARCH DETAIL
...