Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 209(3): 629-640, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35840162

ABSTRACT

Radiotherapy (RT) is commonly employed to treat solid tumors. Immune checkpoint blockade of programmed cell death protein 1 (PD-1) and CTLA-4 improves survival in RT patients, yet many fail to respond to combination therapy. Natural killer group 2 (NKG2) family receptors, particularly inhibitory NKG2A and activating NKG2D, have emerged as promising therapeutic targets to improve antitumor T cell responses; thus, we examined how these receptors and their ligands (Qa-1b and retinoic acid early inducible 1 [Rae-1], respectively) regulate the RT response in C57BL/6 mice bearing syngeneic B16F10 melanoma and MC38 colorectal adenocarcinoma tumors. RT (15 Gy) transiently reduced B16F10 tumor burden, whereas MC38 tumors exhibited durable response to RT. Intratumoral NK and CD8 T cells expressed NKG2A and NKG2D in both models, which was unaltered by RT. In vitro/in vivo RT increased tumor/stromal cell Qa-1b and Rae-1 expression in both models, especially B16F10 tumors, but IFN-γ stimulation induced both Qa-1b and Rae-1 only in B16F10 tumors. NKG2A/Qa-1b inhibition alone did not improve RT response in either model, but combined RT and NKG2A/PD-1 blockade improved survival in the B16F10 model. Depletion experiments indicate that the triple therapy efficacy is CD8 T cell-dependent with negligible NK cell contribution. RNA sequencing of CD8 T cells from triple therapy-treated B16F10 tumors showed increased proliferative capacity compared with RT and PD-1 blockade alone. Our work demonstrates that RT modulates NKG2A ligand expression, which inhibits RT-induced T cell responses in tumors that fail to respond to combined RT and PD-1 blockade. These results provide a rationale for combining NKG2A blockade with immune checkpoint blockade therapies and RT to improve clinical response.


Subject(s)
NK Cell Lectin-Like Receptor Subfamily C , NK Cell Lectin-Like Receptor Subfamily K , Programmed Cell Death 1 Receptor , Animals , Mice , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Mice, Inbred C57BL , NK Cell Lectin-Like Receptor Subfamily C/metabolism , Programmed Cell Death 1 Receptor/metabolism
2.
Adv Radiat Oncol ; 7(2): 100867, 2022.
Article in English | MEDLINE | ID: mdl-35036637

ABSTRACT

PURPOSE: Orthotopic tumors more closely recapitulate human cancers than do ectopic models; however, precision targeting of such internal tumors for radiation therapy (RT) without inducing systemic toxicity remains a barrier. We developed an innovative murine orthotopic rectal tumor model where the insertion of clinical grade titanium fiducial clips on opposing sides of the rectal tumor allowed for targeted administration of short-course radiation therapy (SCRT). With this novel approach, clinically relevant RT regimens can be administered to orthotopic tumors to explore the biology and efficacy of radiation alone or as a combination therapy in a murine model that closely recapitulates human disease. METHODS AND MATERIALS: Murine Colon 38-luciferase tumor cells were injected into the rectal wall of syngeneic mice, and fiducial clips were applied to demarcate the tumor. An SCRT regimen consisting of 5 consecutive daily doses of 5 Gy delivered by an image-guided conformal small animal irradiator was administered 9 days after implantation. Tumor burden and survival were monitored along with histological and flow cytometric analyses on irradiated versus untreated tumors at various time points. RESULTS: SCRT administered to orthotopic rectal tumors resulted in a reduction in tumor burden and enhanced overall survival with no apparent signs of systemic toxicity. This treatment paradigm resulted in significant reductions in tumor cellularity and increases in fibrosis and hyaluronic acid production, recapitulating the SCRT-induced effects observed in human cancers. CONCLUSIONS: We have established a means to target murine orthotopic rectal tumors using fiducial markers with a fractionated and clinically relevant SCRT schedule that results in an RT response similar to what is observed in human rectal cancer. We also validated our model through examining various parameters associated with human cancer that are influenced by irradiation. This model can be used to further explore RT doses and scheduling, and to test combinatorial therapies.

3.
Int J Radiat Oncol Biol Phys ; 111(1): 284-296, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33933481

ABSTRACT

PURPOSE: Dexamethasone is commonly given during radiation therapy (RT) to manage toxicities. Our study examines if dexamethasone coadministration with RT inhibits the RT-induced antitumor T cell response in mouse. METHODS AND MATERIALS: Intramuscularly implanted MC38 tumors were irradiated with 15 Gy after establishing for 7 days. Tumor bearing mice were administered dexamethasone using multiple schedules and doses. Peripheral lymphocyte reduction was monitored by complete blood count and intratumoral and tumor draining lymph node (tdLN) populations by flow cytometry. Effector phenotype and function of ex vivo stimulated tumor-infiltrating lymphocytes (TILs) and naïve splenocytes as well as in vivo TILs with or without dexamethasone were monitored by flow cytometry and ELISA. RESULTS: Long course high dose, short course high dose, and short course human equivalent dose dexamethasone reduced peripheral lymphocytes yet did not inhibit survival after irradiation. Short course high dose administration decreased TIL and tdLN lymphocyte activation as well as tdLN mass but did not affect TIL frequencies or change tdLN cell population composition. Dexamethasone inhibited effector function of ex vivo stimulated naïve splenocytes and TILs, but magnitude of IFN-γ secretion was consistently higher in TILs regardless of dexamethasone dose. In vivo analysis of TILs after irradiation and HE dexamethasone treatment showed that TILs had a similar effector phenotype compared with vehicle controls. CONCLUSIONS: Dexamethasone reduces blood and tdLN lymphocytes. Dexamethasone also suppresses TIL activation/effector function yet does not affect survival in irradiated MC38 tumor bearing mice, which depend on RT-induced immune responses for therapy efficacy. Additional study in human subjects is warranted.


Subject(s)
Colorectal Neoplasms/radiotherapy , Dexamethasone/pharmacology , Lymphocytes, Tumor-Infiltrating/radiation effects , Animals , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Dexamethasone/administration & dosage , Interferon-gamma/biosynthesis , Lymph Nodes/drug effects , Lymph Nodes/immunology , Mice , Mice, Inbred C57BL , Phenotype
4.
Radiat Res ; 191(6): 585-589, 2019 06.
Article in English | MEDLINE | ID: mdl-31021732

ABSTRACT

While ionizing radiation is a major form of cancer therapy, radioresistance remains a therapeutic obstacle. We have previously shown that the mandated housing temperature for laboratory mice (∼22°C) induces mild, but chronic, cold stress resulting in increased circulating norepinephrine, which binds to, and triggers activation of, beta-adrenergic receptors (ß-AR) on tumor and immune cells. This adrenergic signaling increases tumor cell intrinsic resistance to chemotherapy and suppression of the anti-tumor immune response. These findings led us to hypothesize that adrenergic stress signaling increases radioresistance in tumor cells in addition to suppressing T-cell-mediated anti-tumor immunity, thus suppressing the overall sensitivity of tumors to radiation. We used three strategies to test the effect of adrenergic signaling on responsiveness to radiation. For one strategy, mice implanted with CT26 murine colon adenocarcinoma were housed at either 22°C or at thermoneutrality (30°C), which reduces physiological adrenergic stress. For a second strategy, we used a ß-AR antagonist ("beta blocker") to block adrenergic signaling in mice housed at 22°C. In either case, tumors were then irradiated with a single 6 Gy dose and the response was compared to mice whose adrenergic stress signaling was not reduced. For the third strategy, we used an in vitro approach in which several different tumor cell lines were treated with a ß-AR agonist and irradiated, and cell survival was then assessed by clonogenic assay. Overall, we found that adrenergic stress significantly impaired the anti-tumor efficacy of radiation by inducing tumor cell resistance to radiation-induced cell killing and by suppression of anti-tumor immunity. Treatment using beta blockers is a promising strategy for increasing the anti-tumor efficacy of radiotherapy.


Subject(s)
Receptors, Adrenergic/metabolism , Signal Transduction/radiation effects , Animals , Cell Line, Tumor , Cell Survival/radiation effects , Cell Transformation, Neoplastic , Colonic Neoplasms/pathology , Colonic Neoplasms/radiotherapy , Female , Humans , Mice , Radiation Tolerance , Temperature
5.
Cancer Res ; 74(19): 5377-85, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25228656

ABSTRACT

Immune dysregulation drives the pathogenesis of chronic inflammatory, autoimmune, and dysplastic disorders. While often intended to address localized pathology, most immune modulatory therapies are administered systemically and carry inherent risk of multiorgan toxicities. Here, we demonstrate, in a murine model of spontaneous gastrointestinal polyposis, that site-specific uptake of orally administered IL10 microparticles ameliorates local and systemic disease to enhance survival. Mechanistic investigations showed that the therapeutic benefit of this treatment derived from neutralization of disease-promoting FoxP3(+)RoRγt(+)IL17(+) pathogenic T-regulatory cells (pgTreg), with a concomitant restoration of FoxP3(+)RoRγt(-)IL17(-) conventional T-regulatory cells (Treg). These findings provide a proof-of-principle for the ability of an oral biologic to restore immune homeostasis at the intestinal surface. Furthermore, they implicate local manipulation of IL10 as a tractable therapeutic strategy to address the inflammatory sequelae associated with mucosal premalignancy.


Subject(s)
Adenomatous Polyposis Coli/prevention & control , Interleukin-10/pharmacology , Neutralization Tests , T-Lymphocytes, Regulatory/drug effects , Administration, Oral , Base Sequence , DNA Primers , Humans , Interleukin-10/administration & dosage , Lymphocyte Depletion , Polymerase Chain Reaction , T-Lymphocytes, Regulatory/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...