Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(10)2023 May 11.
Article in English | MEDLINE | ID: mdl-37242838

ABSTRACT

In this study, composites based on a heterophasic polypropylene (PP) copolymer containing different loadings of micro-sized (i.e., talc, calcium carbonate, and silica) and nano-sized (i.e., a nanoclay) fillers were formulated via melt compounding to obtain PP-based materials suitable for Material Extrusion (MEX) additive manufacturing processing. The assessment of the thermal properties and the rheological behavior of the produced materials allowed us to disclose the relationships between the influence of the embedded fillers and the fundamental characteristics of the materials affecting their MEX processability. In particular, composites containing 30 wt% of talc or calcium carbonate and 3 wt% of nanoclay showed the best combination of thermal and rheological properties and were selected for 3D printing processing. The evaluation of the morphology of the filaments and the 3D-printed samples demonstrated that the introduction of different fillers affects their surface quality as well as the adhesion between subsequently deposited layers. Finally, the tensile properties of 3D-printed specimens were assessed; the obtained results showed that modulable mechanical properties can be achieved depending on the type of the embedded filler, opening new perspectives towards the full exploitation of MEX processing in the production of printed parts endowed with desirable characteristics and functionalities.

2.
Nanomaterials (Basel) ; 12(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36364519

ABSTRACT

In this work, the development of nanocomposite systems based on reduced graphite oxide (rGO) was combined with the development of crosslinked materials characterized by dynamic covalent bonds, i.e., a covalent associative network, starting from ad-hoc synthesized hydroxyl terminated polycaprolactone (PCL-OH). The crosslinking reaction was carried out using methylenediphenyl diisocyanate (MDI) to create systems capable of bond exchanges via transesterification and transcarbamoylation reactions, in the presence of stannous octoate as a catalyst. The above materials were prepared at two different temperatures (120 and 200 °C) and two PCL-OH:MDI ratios. FT-IR measurements proved the formation of urethane bonds in all the prepared samples. Crosslinking was demonstrated by contacting the samples with a solvent capable of dissolving the star-shaped PCL. These tests showed a significant increase in the crosslinked fraction with increasing the temperature and the PCL-OH:MDI ratio. In order to evidence the effect of crosslinking on rGO dispersion and the final properties of the material, a nanocomposite sample was also prepared using a linear commercial PCL, with the nanofiller mixed under the same conditions used to develop the crosslinked systems. The dispersion of rGO, which was investigated using FE-SEM measurements, was similar in the different systems prepared, indicating that the crosslinking process had a minor effect on the dispersibility of the nanofiller. As far as the thermal properties are concerned, the DSC measurements of the prepared samples showed that the crosslinking leads to a decrease in the crystallinity of the polymer, a phenomenon which was particularly evident in the sample prepared at 200 °C with a PCL-OH: MDI ratio of 1:1.33 and was related to the decrease in the polymer chain mobility. Moreover, rGO was found to act as a nucleating agent and increase the crystallization temperature of the nanocomposite sample based on linear commercial PCL, while the contribution of rGO in the crosslinked nanocomposite samples was minor. Rheological measurements confirmed the crosslinking of the PCL-OH system which generates a solid-like behavior depending on the PCL-OH:MDI ratio used. The presence of rGO during crosslinking generated a further huge increase in the viscosity of the melt with a remarkable solid-like behavior, confirming a strong interaction between rGO and crosslinked PCL. Finally, the prepared nanocomposites exhibited self-healing and recyclability properties, thus meeting the requirements for sustainable materials.

3.
ACS Appl Mater Interfaces ; 13(49): 59206-59220, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34851623

ABSTRACT

Free-standing nanopapers based on graphene and its related materials have been widely studied and proposed for flexible heat spreader applications. Given that these materials are typically brittle, this work reports the exploitation of polycaprolactone (PCL) as a polymer binder to enhance resistance and flexibility of nanopapers based on graphite nanoplates (GNP), while maintaining a high thermal conductivity. Properties of nanopapers appear to correlate with the excellent PCL adhesion and strong nucleation of the surface of GNP flakes. Furthermore, different crystalline populations were observed for PCL within the nanopaper and were investigated in detail via differential scanning calorimetry advanced techniques and X-ray diffraction. These demonstrated the coexistence of conventional unoriented PCL crystals, oriented PCL crystals obtained as a consequence of the strong nucleation effect, and highly stable PCL fractions explained by the formation of crystalline pre-freezing layers, the latter having melting temperatures well above the equilibrium melting temperature for pristine PCL. This peculiar crystallization behavior of PCL, reported in this paper for the first time for a tridimensional structure, has a direct impact on material properties. Indeed, the presence of high thermal stability crystals, strongly bound to GNP flakes, coexisting with the highly flexible amorphous fraction, delivers an ideal solution for the strengthening and toughening of GNP nanopapers. Thermomechanical properties of PCL/GNP nanopapers, investigated both on a heating ramp and by creep tests at high temperatures, demonstrated superior stiffness well above the conventional melting temperature of PCL. At the same time, a thermal conductivity > 150 W/m·K was obtained for PCL/GNP nanopapers, representing a viable alternative to traditional metals in terms of heat dissipation, while affording flexibility and light weight, unmatched by conventional thermally conductive metals or ceramics. Besides the obtained performance, the formation of polymer crystals that are stable above the equilibrium melting temperature constitutes a novel approach in the self-assembly of highly ordered nanostructures based on graphene and related materials.

4.
Nanomaterials (Basel) ; 11(2)2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33540598

ABSTRACT

This study demonstrates the possibility of forming 3D structures with enhanced thermal conductivity (k) by vat printing a silicone-acrylate based nanocomposite. Polydimethylsiloxane (PDSM) represent a common silicone-based polymer used in several applications from electronics to microfluidics. Unfortunately, the k value of the polymer is low, so a composite is required to be formed in order to increase its thermal conductivity. Several types of fillers are available to reach this result. In this study, boron nitride (BN) nanoparticles were used to increase the thermal conductivity of a PDMS-like photocurable matrix. A digital light processing (DLP) system was employed to form complex structures. The viscosity of the formulation was firstly investigated; photorheology and attenuate total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) analyses were done to check the reactivity of the system that resulted as suitable for DLP printing. Mechanical and thermal analyses were performed on printed samples through dynamic mechanical thermal analysis (DMTA) and tensile tests, revealing a positive effect of the BN nanoparticles. Morphological characterization was performed by scanning electron microscopy (SEM). Finally, thermal analysis demonstrated that the thermal conductivity of the material was improved, maintaining the possibility of producing 3D printable formulations.

5.
Polymers (Basel) ; 12(11)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33213008

ABSTRACT

In a singular period, such as during a pandemic, the use of personal protective masks can become mandatory for all citizens in many places worldwide. The most used device is the disposable mask that, inevitably, generates a substantial waste flow to send to incineration or landfill. The article examines the most diffused type of disposable face mask and identifies the characteristic of the constituent materials through morphological, chemical, physical, and thermal analyses. Based on these investigations, a mechanical recycling protocol with different approaches is proposed. Advantages and disadvantages of the different recycling solutions are discussed with considerations on necessary separation processes and other treatments. The four solutions investigated lead to a recycling index from 78 to 91% of the starting disposable mask weight. The rheological, mechanical, and thermo-mechanical properties of the final materials obtained from the different recycling approaches are compared with each other and with solutions present on the market resulting in materials potentially industrially exploitable.

6.
Nanomaterials (Basel) ; 10(11)2020 Oct 30.
Article in English | MEDLINE | ID: mdl-33143017

ABSTRACT

Different types of graphene-related materials (GRM) are industrially available and have been exploited for thermal conductivity enhancement in polymers. These include materials with very different features, in terms of thickness, lateral size and composition, especially concerning the oxygen to carbon ratio and the possible presence of surface functionalization. Due to the variability of GRM properties, the differences in polymer nanocomposites preparation methods and the microstructures obtained, a large scatter of thermal conductivity performance is found in literature. However, detailed correlations between GRM-based nanocomposites features, including nanoplatelets thickness and size, defectiveness, composition and dispersion, with their thermal conductivity remain mostly undefined. In the present paper, the thermal conductivity of GRM-based polymer nanocomposites, prepared by melt polymerization of cyclic polybutylene terephtalate oligomers and exploiting 13 different GRM grades, was investigated. The selected GRM, covering a wide range of specific surface area, size and defectiveness, secure a sound basis for the understanding of the effect of GRM properties on the thermal conductivity of their relevant polymer nanocomposites. Indeed, the obtained thermal conductivity appeares to depend on the interplay between the above GRM feature. In particular, the combination of low GRM defectiveness and high filler percolation density was found to maximize the thermal conductivity of nanocomposites.

7.
Carbohydr Polym ; 119: 78-84, 2015 Mar 30.
Article in English | MEDLINE | ID: mdl-25563947

ABSTRACT

Isosorbide is a non-toxic biodegradable diol derived from bio-based feedstock. It can be used for preparing thermoplastic starch through a semi-industrial process of extrusion. Isosorbide allows some technological advantages with respect to classical plasticizers: namely, direct mixing with starch, energy savings for the low processing temperature required and lower water uptake. Indeed, maize starch was directly mixed with the solid plasticizer and direct fed in the main hopper of a co-rotating twin screw extruder. Starch plasticization was assessed by X-ray diffraction (XRD) and dynamic-mechanical analysis (DMTA). Oxygen permeability, water uptake and mechanical properties were measured at different relative humidity (R.H.) values. These three properties turned out to be highly depending on the R.H. No retrogradation and changing of the material properties were occurred from XRD and DMTA after 9 months.


Subject(s)
Isosorbide/chemistry , Plasticizers/chemistry , Plastics/chemistry , Starch/chemistry , Temperature , Elastic Modulus , Glycerol/chemistry , Oxygen/chemistry , Permeability , Thermogravimetry , Water/chemistry , X-Ray Diffraction , Zea mays/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...