Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 3268, 2020 Feb 24.
Article in English | MEDLINE | ID: mdl-32094360

ABSTRACT

We describe the realization and characterization of a compact, autonomous fiber laser system that produces the optical frequencies required for laser cooling, trapping, manipulation, and detection of 87Rb atoms - a typical atomic species for emerging quantum technologies. This device, a customized laser system from the Muquans company, is designed for use in the challenging operating environment of the Laboratoire Souterrain à Bas Bruit (LSBB) in France, where a new large scale atom interferometer is being constructed underground - the MIGA antenna. The mobile bench comprises four frequency-agile C-band Telecom diode lasers that are frequency doubled to 780 nm after passing through high-power fiber amplifiers. The first laser is frequency stabilized on a saturated absorption signal via lock-in amplification, which serves as an optical frequency reference for the other three lasers via optical phase-locked loops. Power and polarization stability are maintained through a series of custom, flexible micro-optic splitter/combiners that contain polarization optics, acousto-optic modulators, and shutters. Here, we show how the laser system is designed, showcasing qualities such as reliability, stability, remote control, and flexibility, while maintaining the qualities of laboratory equipment. We characterize the laser system by measuring the power, polarization, and frequency stability. We conclude with a demonstration using a cold atom source from the MIGA project and show that this laser system fulfills all requirements for the realization of the antenna.

2.
Phys Rev Lett ; 122(4): 043604, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30768283

ABSTRACT

We propose new multidimensional atom optics that can create coherent superpositions of atomic wave packets along three spatial directions. These tools can be used to generate light-pulse atom interferometers that are simultaneously sensitive to the three components of acceleration and rotation, and we discuss how to isolate these inertial components in a single experimental shot. We also present a new type of atomic gyroscope that is insensitive to parasitic accelerations and initial velocities. The ability to measure the full acceleration and rotation vectors with a compact, high-precision, low-bias inertial sensor could strongly impact the fields of inertial navigation, gravity gradiometry, and gyroscopy.

3.
Phys Rev Lett ; 123(24): 240402, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31922832

ABSTRACT

We report on the all-optical production of Bose-Einstein condensates in microgravity using a combination of grey molasses cooling, light-shift engineering and optical trapping in a painted potential. Forced evaporative cooling in a 3-m high Einstein elevator results in 4×10^{4} condensed atoms every 13.5 s, with a temperature as low as 35 nK. In this system, the atomic cloud can expand in weightlessness for up to 400 ms, paving the way for atom interferometry experiments with extended interrogation times and studies of ultracold matter physics at low energies on ground or in Space.

4.
Opt Lett ; 43(16): 3937-3940, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-30106921

ABSTRACT

We realize a 1 W all-fibered polarized compact and robust laser source at 852 nm for laser cooling of cesium atoms. The architecture is based on the sum-frequency generation of 1540 and 1908 nm lasers, realized through a periodically poled lithium niobate waveguide with a conversion efficiency of 40%. A linewidth of 20 kHz is achieved with the development of a distributed feedback fiber laser at 1908 nm. The operation of this laser source is demonstrated on a focused ion beam (FIB) experiment based on cold cesium atoms.

5.
Opt Lett ; 36(21): 4128-30, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-22048340

ABSTRACT

We present a compact and stable dual-wavelength laser source for onboard atom interferometry with two different atomic species. It is based on frequency-doubled telecom lasers locked on a femtosecond optical frequency comb. We take advantage of the maturity of fiber telecom technology to reduce the number of free-space optical components, which are intrinsically less stable, and to make the setup immune to vibrations and thermal fluctuations. The source provides the frequency agility and phase stability required for atom interferometry and can easily be adapted to other cold atom experiments. We have shown its robustness by achieving the first dual-species K-Rb magneto-optical trap in microgravity during parabolic flights.

6.
Nat Commun ; 2: 474, 2011 Sep 20.
Article in English | MEDLINE | ID: mdl-21934658

ABSTRACT

Inertial sensors relying on atom interferometry offer a breakthrough advance in a variety of applications, such as inertial navigation, gravimetry or ground- and space-based tests of fundamental physics. These instruments require a quiet environment to reach their performance and using them outside the laboratory remains a challenge. Here we report the first operation of an airborne matter-wave accelerometer set up aboard a 0g plane and operating during the standard gravity (1g) and microgravity (0g) phases of the flight. At 1g, the sensor can detect inertial effects more than 300 times weaker than the typical acceleration fluctuations of the aircraft. We describe the improvement of the interferometer sensitivity in 0g, which reaches 2 x 10-4 ms-2 / √Hz with our current setup. We finally discuss the extension of our method to airborne and spaceborne tests of the Universality of free fall with matter waves.

SELECTION OF CITATIONS
SEARCH DETAIL
...