Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Energy Fuels ; 34(11): 14688-14707, 2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33250570

ABSTRACT

This work (and the companion paper, Part II) presents new experimental data for the combustion of n-C3-C6 alcohols (n-propanol, n-butanol, n-pentanol, n-hexanol) and a lumped kinetic model to describe their pyrolysis and oxidation. The kinetic subsets for alcohol pyrolysis and oxidation from the CRECK kinetic model have been systematically updated to describe the pyrolysis and high- and low-temperature oxidation of this series of fuels. Using the reaction class approach, the reference kinetic parameters have been determined based on experimental, theoretical, and kinetic modeling studies previously reported in the literature, providing a consistent set of rate rules that allow easy extension and good predictive capability. The modeling approach is based on the assumption of an alkane-like and alcohol-specific moiety for the alcohol fuel molecules. A thorough review and discussion of the information available in the literature supports the selection of the kinetic parameters that are then applied to the n-C3-C6 alcohol series and extended for further proof to describe n-octanol oxidation. Because of space limitations, the large amount of information, and the comprehensive character of this study, the manuscript has been divided into two parts. Part I describes the kinetic model as well as the lumping techniques and provides a synoptic synthesis of its wide range validation made possible also by newly obtained experimental data. These include speciation measurements performed in a jet-stirred reactor (p = 107 kPa, T = 550-1100 K, φ = 0.5, 1.0, 2.0) for n-butanol, n-pentanol, and n-hexanol and ignition delay times of ethanol, n-propanol, n-butanol, n-pentanol/air mixtures measured in a rapid compression machine at φ = 1.0, p = 10 and 30 bar, and T = 704-935 K. These data are presented and discussed in detail in Part II, together with detailed comparisons with model predictions and a deep kinetic discussion. This work provides new experimental targets that are useful for kinetic model development and validation (Part II), as well as an extensively validated kinetic model (Part I), which also contains subsets of other reference components for real fuels, thus allowing the assessment of combustion properties of new sustainable fuels and fuel mixtures.

2.
Energy Fuels ; 34(11): 14708-14725, 2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33250571

ABSTRACT

This work presents new experimental data for n-C3-C6 alcohol, combustion (n-propanol, n-butanol, n-pentanol, n-hexanol). Speciation measurements have been carried out in a jet-stirred reactor (p = 107 kPa, T = 550-1100 K, φ = 0.5, 1.0, 2.0) for n-butanol, n-pentanol, and n-hexanol. Ignition delay times of ethanol, n-propanol, n-butanol, and n-pentanol/air mixtures were measured in a rapid compression machine at φ = 1.0, p = 10 and 30 bar, and T = 704-935 K. The kinetic subsets for alcohol pyrolysis and oxidation from the CRECK kinetic model have been systematically updated to describe the pyrolysis and high- and low-temperature oxidation of this series of fuels as described in Part I of this work (Pelucchi M.; Namysl S.; Ranzi E.Combustion of n-C3-C6 linear alcohol: an experimental and kinetic modeling study. Part I: reaction classes, rate rules, model lumping and validation. Submitted to Energy and Fuels, 2020). Part II describes in detail the facilities used for this systematic experimental investigation of n-C3-C6 alcohol combustion and presents a complete validation of the kinetic model by means of comparisons with the new data and measurements previously reported in the literature for both pyrolytic and oxidative conditions. Kinetic analyses such as rate of production and sensitivity analyses are used to highlight the governing reaction pathways and reasons for existing deviations, motivating possible further improvements in our chemistry mechanism.

3.
Combust Explos Shock Waves ; 49(1): 11-18, 2013 Jan.
Article in English | MEDLINE | ID: mdl-24092946

ABSTRACT

The structures of three laminar premixed stoichiometric flames at low pressure (6.7 kPa): a pure methane flame, a pure ethanol flame and a methane flame doped by 30% of ethanol, have been investigated and compared. The results consist of concentration profiles of methane, ethanol, O2, Ar, CO, CO2, H2O, H2, C2H6, C2H4, C2H2, C3H8, C3H6, p-C3H4, a-C3H4, CH2O, CH3HCO, measured as a function of the height above the burner by probe sampling followed by on-line gas chromatography analyses. Flame temperature profiles have been also obtained using a PtRh (6%)-PtRh (30%) type B thermocouple. The similarities and differences between the three flames were analyzed. The results show that, in these three flames, the concentration of the C2 intermediates is much larger than that of the C3 species. In general, mole fraction of all intermediate species in the pure ethanol flame is the largest, followed by the doped flame, and finally the pure methane flame.

4.
J Phys Chem A ; 116(21): 5100-11, 2012 May 31.
Article in English | MEDLINE | ID: mdl-22591104

ABSTRACT

An experimental study of the oxidation of ethylcyclohexane has been performed in a jet-stirred reactor with online gas chromatography, under quasi-atmospheric pressure (800 Torr), at temperatures ranging from 500 to 1100 K (low- and intermediate-temperature zone including the negative temperature coefficient area), at a residence time of 2 s, and for three equivalence ratios (0.25, 1, and 2). Ethylcyclohexane displays important low-temperature reactivity with a well-marked negative temperature coefficient behavior. In addition to 47 products with a mass lower than ethylcyclohexane which have been quantified, many species with a C(8)H(14)O formula (molecular weight of 126) were detected by GC-MS and 7 of them were quantified. These molecules are cyclic ethers, ketones, and aldehydes with the same carbon skeleton as the reactant. Experiments were also carried on under the same conditions for two other C(8) hydrocarbons, n-octane and 1-octene, showing that the reactivity of ethylcyclohexane is close to that of the alkene and lower than that of the alkane. Simulations using a detailed kinetic model of the literature allow a good prediction of the global reactivity and of the main hydrocarbon products for temperatures above 800 K. The main reaction channels leading to the observed reaction products at both low (below 800 K) and intermediate temperature (above 800 K) are discussed.

5.
Energy (Oxf) ; 43(1): 161-171, 2012 Jul.
Article in English | MEDLINE | ID: mdl-23761949

ABSTRACT

JTHERGAS is a versatile calculator (implemented in JAVA) to estimate thermodynamic information from two dimensional graphical representations of molecules and radicals involving covalent bonds based on the Benson additivity method. The versatility of JTHERGAS stems from its inherent philosophy that all the fundamental data used in the calculation should be visible, to see exactly where the final values came from, and modifiable, to account for new data that can appear in the literature. The main use of this method is within automatic combustion mechanism generation systems where fast estimation of a large number and variety of chemical species is needed. The implementation strategy is based on meta-atom definitions and substructure analysis allowing a highly extensible database without modification of the core algorithms. Several interfaces for the database and the calculations are provided from terminal line commands, to graphical interfaces to web-services. The first order estimation of thermodynamics is based summing up the contributions of each heavy atom bonding description. Second order corrections due to steric hindrance and ring strain are made. Automatic estimate of contributions due to internal, external and optical symmetries are also made. The thermodynamical data for radicals is calculated by taking the difference due to the lost of a hydrogen radical taking into account changes in symmetry, spin, rotations, vibrations and steric hindrances. The software is public domain and is based on standard libraries such as CDK and CML.

6.
Comput Chem ; 24(5): 541-60, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10890364

ABSTRACT

This paper describes EXGAS, an advanced software for the automatic generation of reaction mechanisms. It has been developed to model the gas-phase oxidation of some components of gasoline, alkanes and ethers. The chemistry involved in these validated mechanisms relies both on a reaction base for some particular species and for the largest part on generic elementary reactions, which are well known for the oxidation of hydrocarbons. The programming of this system is mainly based on a referenced canonical treelike description of molecules and free radicals and can handle both acyclic and cyclic compounds. Mechanisms are generated in a way to ensure their comprehensiveness. Chemical models, which can directly be used by codes of simulations, are obtained as a result.

SELECTION OF CITATIONS
SEARCH DETAIL
...