Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 52(10): 3176-3187, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36790350

ABSTRACT

Cu(II) complexes of cyclen-based ligands CuL1-CuL6 were synthesized and characterized. The corresponding ligands L1-L6 comprise different donor sets including S and O atoms. Whereas cyclen (L1) is commercially available, L2-L6 were synthesized according to protocols available in the literature. Cleavage activity of the complexes towards plasmid DNA was tested in the presence and absence of ascorbate as a reducing agent (oxidative vs. hydrolytic cleavage). As previously shown, the substitution of N donor atoms with hard donor O atoms leads to efficient oxidative nucleases, but dissociation of the complex upon reduction. We thus opted for S substitution (soft donors) to stabilize the reduced Cu(I) species. Increasing the S content, however, leads to species that are difficult to reoxidize in order to ensure efficient oxidative DNA cleavage. We are showing by experimental (cyclic voltammetry) and computational means (DFT) that the rational combination of O and S atoms next to two nitrogen donors within the macrocycle (oxathiacyclen complex CuL6) leads to the stabilization of both redox states. The complex thus exhibits the highest oxidative DNA cleavage activity within this family of cyclen-based Cu(II) complexes - without leaching of the metal ion during reduction.

2.
Angew Chem Int Ed Engl ; 62(12): e202217076, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36583430

ABSTRACT

In class Ib ribonucleotide reductases (RNRs) a dimanganese(II) cluster activates superoxide (O2 ⋅- ) rather than dioxygen (O2 ), to access a high valent MnIII -O2 -MnIV species, responsible for the oxidation of tyrosine to tyrosyl radical. In a biomimetic approach, we report the synthesis of a thiolate-bound dimanganese complex [MnII 2 (BPMT)(OAc)2 ](ClO)4 (BPMT=(2,6-bis{[bis(2-pyridylmethyl)amino]methyl}-4-methylthiophenolate) (1) and its reaction with O2 ⋅- to form a [(BPMT)MnO2 Mn]2+ complex 2. Resonance Raman investigation revealed the presence of an O-O bond in 2, while EPR analysis displayed a 16-line St =1/2 signal at g=2 typically associated with a MnIII MnIV core, as detected in class Ib RNRs. Unlike all other previously reported Mn-O2 -Mn complexes, generated by O2 ⋅- activation at Mn2 centers, 2 proved to be a capable electrophilic oxidant in aldehyde deformylation and phenol oxidation reactions, rendering it one of the best structural and functional models for class Ib RNRs.

3.
Angew Chem Int Ed Engl ; 62(6): e202214074, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36378951

ABSTRACT

In many metalloenzymes, sulfur-containing ligands participate in catalytic processes, mainly via the involvement in electron transfer reactions. In a biomimetic approach, we now demonstrate the implication of S-ligation in cobalt mediated oxygen reduction reactions (ORR). A comparative study between the catalytic ORR capabilities of the four-nitrogen bound [Co(cyclam)]2+ (1; cyclam=1,5,8,11-tetraaza-cyclotetradecane) and the S-containing analog [Co(S2 N2 -cyclam)]2+ (2; S2 N2 -cyclam=1,8-dithia-5,11-diaza-cyclotetradecane) reveals improved catalytic performance once the chalcogen is introduced in the Co coordination sphere. Trapping and characterization of the intermediates formed upon dioxygen activation at the CoII centers in 1 and 2 point to the involvement of sulfur in the O2 reduction process as the key for the improved catalytic ORR capabilities of 2.

4.
Chem Sci ; 13(26): 7907-7913, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35865905

ABSTRACT

Imidyl and nitrene metal species play an important role in the N-functionalisation of unreactive C-H bonds as well as the aziridination of olefines. We report on the synthesis of the trigonal imido iron complexes [Fe(NMes)L2]0,- (L = -N{Dipp}SiMe3); Dipp = 2,6-diisopropyl-phenyl; Mes = (2,4,6-trimethylphenyl) via reaction of mesityl azide (MesN3) with the linear iron precursors [FeL2]0,-. UV-vis-, EPR-, 57Fe Mössbauer spectroscopy, magnetometry, and computational methods suggest for the reduced form an electronic structure as a ferromagnetically coupled iron(ii) imidyl radical, whereas oxidation leads to mixed iron(iii) imidyl and electrophilic iron(ii) nitrene character. Reactivity studies show that both complexes are capable of H atom abstraction from C-H bonds. Further, the reduced form [Fe(NMes)L2]- reacts nucleophilically with CS2 by inserting into the imido iron bond, as well as electrophilically with CO under nitrene transfer. The neutral [Fe(NMes)L2] complex shows enhanced electrophilic behavior as evidenced by nitrene transfer to a phosphine, yet in combination with an overall reduced reactivity.

5.
J Am Chem Soc ; 144(19): 8707-8716, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35522997

ABSTRACT

Controlling the electronic spin state in single molecules through an external stimulus is of interest in developing devices for information technology, such as data storage and quantum computing. We report the synthesis and operation mode of two all-organic molecular spin-state switches that can be photochemically switched from a diamagnetic [electron paramagnetic resonance (EPR)-silent] to a paramagnetic (EPR-active) form at cryogenic temperatures due to a reversible electrocyclic reaction of its carbon skeleton. Facile synthetic substitution of a configurationally stable 1,14-dimethyl-[5]helicene with radical stabilizing groups at the 4,11-positions afforded two spin-state switches as 4,11-dioxo or 4,11-bis(dicyanomethylidenyl) derivatives in a closed diamagnetic form. After irradiation with an LED light source at cryogenic temperatures, a stable paramagnetic state is readily obtained, making this system a bistable magnetic switch that can reversibly react back to its diamagnetic form through a thermal stimulus. The switching can be monitored with UV/vis spectroscopy and EPR spectroscopy or induced by electrochemical reduction and reoxidation. Variable-temperature EPR spectroscopy of the paramagnetic species revealed an open-shell triplet ground state with an experimentally determined triplet-singlet energy gap of ΔET-S < 0.1 kcal mol-1. The inherent chirality and the ability to separate the enantiomers turns this helical motif into a potential chiroptical spin-state switch. The herein developed 4,11-substitution pattern on the dimethyl[5]helicene introduces a platform for designing future generations of organic molecular photomagnetic switches that might find applications in spintronics and related fields.

6.
Inorg Chem ; 61(20): 7794-7803, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35522526

ABSTRACT

In this report, we present intricate pathways for the synthesis of linear nickel(I) silylamide K{m}[Ni(NR2)2] (NR2 = -N(SiMe3)2). This is achieved first via the reduction of nickel(II) trisamide Li(donor)4[Ni(NR2)3] (Li(thf)x[1]) with KC8 in the presence of 18-crown-6 or crypt.222. In due course, the behavior of Li(donor)4[Ni(NR2)3] as a source of masked two-coordinate nickel(II) hexamethyldisilazanide is explored, leading to the formation of nickel(I) and nickel(II) N-donor adducts, as well as metal-metal-bonded dinickel(I) trisamide K(toluene)[Ni2(NR2)3] (K(toluene)[5]). Finally, a convenient and reliable synthesis of K{m}[Ni(NR2)2] by ligand exchange of phosphines in [Ni(NR2)(PPh3)2] with K{m}(NR2) is presented. This allows for the comprehensive analysis of its electronic properties which reveals a fluxional behavior in solution with tight anion/cation interactions.

7.
J Inorg Biochem ; 227: 111668, 2022 02.
Article in English | MEDLINE | ID: mdl-34923388

ABSTRACT

A rate enhancement of one to two orders of magnitude can be obtained in the aldehyde deformylation reactions by replacing the -N(CH3) groups of [NiIII(O2)(Me4[12]aneN4)]+ (Me4[12]aneN4 = 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane) and [NiIII(O2)(Me4[13]aneN4)]+ (Me4[13]aneN4 = 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclotridecane) complexes by -NH in [NiIII(O2)([12]aneN4)]+ (2; [12]aneN4 = 1,4,7,10-tetraazacyclododecane) and [NiIII(O2)([13]aneN4)]+ (4; [13]aneN4 = 1,4,7,10-tetraazacyclotridecane). Based on detailed spectroscopic, reaction-kinetics and theoretical investigations, the higher reactivities of 2 and 4 are attributed to the changes in the secondary-sphere interactions between the [NiIII(O2)]+ and [12]aneN4 or [13]aneN4 moieties, which open up an alternative electrophilic pathway for the aldehyde oxidation reaction. Identification of primary kinetic isotope effects on the reactivity and stability of 2 when the -NH groups of the [12]aneN4 ligand are deuterated may also suggest the presence of secondary interaction between the -NH groups of [12]aneN4 and [NiIII(O2)]+ moieties, although, such interactions are not obvious in the DFT calculated optimized structure at the employed level of theory.


Subject(s)
Aldehydes/chemistry , Coordination Complexes/chemistry , Nickel/chemistry , Oxidation-Reduction
8.
Angew Chem Int Ed Engl ; 60(28): 15376-15380, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-33977634

ABSTRACT

We report on the synthesis of a variety of trigonal imido cobalt complexes [Co(NAryl)L2 ]- , (L=N(Dipp)SiMe3 ), Dipp=2,6-diisopropylphenyl) with very long Co-NAryl bonds of around 1.75 Å. Their electronic structure was interrogated using a variety of physical and spectroscopic methods such as EPR or X-Ray absorption spectroscopy which leads to their description as highly unusual imidyl cobalt complexes. Computational analyses corroborate these findings and further reveal that the high-spin state is responsible for the imidyl character. Exchange of the Dipp substituent on the imide by the smaller mesityl function (2,4,6-trimethylphenyl) effectuates the unexpected Me3 Si shift from the ancillary ligand set to the imidyl nitrogen, revealing a highly reactive, nucleophilic character of the imidyl unit.

9.
Nat Rev Chem ; 4(8): 404-419, 2020 Aug.
Article in English | MEDLINE | ID: mdl-37127969

ABSTRACT

High-valent metal-oxo species with multiply-bonded M-O groups have been proposed as key intermediates in many biological and abiological catalytic oxidation reactions. These intermediates are implicated as active oxidants in alkane hydroxylation, olefin epoxidation and other oxidation reactions. For example, [FeivO(porphyrinato•-)]+ cofactors bearing π-radical porphyrinato•- ligands oxidize organic substrates in cytochrome P450 enzymes, which are common to many life forms. Likewise, high-valent Mn-oxo species are active for H2O oxidation in photosystem II. The chemistry of these native reactive species has inspired chemists to prepare highly oxidized transition-metal complexes as functional mimics. Although many synthetic Fe-O and Mn-O complexes now exist, the analogous oxo complexes of the late transition metals (groups 9-11) are rare. Indeed, late-transition-metal-oxo complexes of tetragonal (fourfold) symmetry should be electronically unstable, a rule commonly referred to as the 'oxo wall'. A few late metal-oxos have been prepared by targeting other symmetries or unusual spin states. These complexes have been studied using spectroscopic and theoretical methods. This Review describes mononuclear non-haem Fe-O and Mn-O species, the nature of the oxo wall and recent advances in the preparation of oxo complexes of Co, Ni and Cu beyond the oxo wall.

SELECTION OF CITATIONS
SEARCH DETAIL
...