Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 25(9): 104797, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36034214

ABSTRACT

Rapid imaging of large biological tissue specimens such as ultrathick sections of mouse brain cannot easily be performed with a standard microscope. Optical mesoscopy offers a solution, but thus far imaging has been too slow to be useful for routine use. We have developed two different illuminators for light-sheet mesoscopy with the Mesolens and we demonstrate their use in high-speed optical mesoscale imaging of large tissue specimens. The first light-sheet approach uses Gaussian optics and is straightforward to implement. It provides excellent lateral resolution and high-speed imaging, but the axial resolution is poor. The second light-sheet is a more complex Airy light-sheet that provides sub-cellular resolution in three dimensions that is comparable in quality to point-scanning confocal mesoscopy, but the light-sheet method of illuminating the specimen reduces the imaging time by a factor of 14. This creates new possibilities for high-content, higher-throughput optical bioimaging at the mesoscale.

2.
Front Cell Infect Microbiol ; 12: 903957, 2022.
Article in English | MEDLINE | ID: mdl-35774409

ABSTRACT

Human African Trypanosomiasis (HAT) is a disease caused by the extracellular parasite Trypanosoma brucei that affects the central nervous system (CNS) during the chronic stage of the infection, inducing neuroinflammation, coma, and death if left untreated. However, little is known about the structural change happening in the brain as result of the infection. So far, infection-induced neuroinflammation has been observed with conventional methods, such as immunohistochemistry, electron microscopy, and 2-photon microscopy only in small portions of the brain, which may not be representative of the disease. In this paper, we have used a newly-developed light-sheet illuminator to image the level of neuroinflammation in chronically infected mice and compared it to naïve controls. This system was developed for imaging in combination with the Mesolens objective lens, providing fast sub-cellular resolution for tens of mm3-large imaging volumes. The mouse brain specimens were cleared using CUBIC+, followed by antibody staining to locate Glial Fibrillary Acid Protein (GFAP) expressing cells, primarily astrocytes and ependymocytes, used here as a proxy for cell reactivity and gliosis. The large capture volume allowed us to detect GFAP+ cells and spatially resolve the response to T. brucei infection. Based on morphometric analyses and spatial distribution of GFAP+ cells, our data demonstrates a significant increase in cell dendrite branching around the lateral ventricle, as well as dorsal and ventral third ventricles, that are negatively correlated with the branch extension in distal sites from the circumventricular spaces. To our knowledge, this is the first report highlighting the potential of light-sheet mesoscopy to characterise the inflammatory responses of the mouse brain to parasitic infection at the cellular level in intact cleared organs, opening new avenues for the development of new mesoscale imaging techniques for the study of host-pathogen interactions.


Subject(s)
Trypanosoma brucei brucei , Trypanosomiasis, African , Animals , Astrocytes/metabolism , Brain/diagnostic imaging , Brain/metabolism , Host-Pathogen Interactions , Mice , Trypanosomiasis, African/parasitology
3.
J Microsc ; 286(3): 201-219, 2022 06.
Article in English | MEDLINE | ID: mdl-35460574

ABSTRACT

Optical mesoscale imaging is a rapidly developing field that allows the visualisation of larger samples than is possible with standard light microscopy, and fills a gap between cell and organism resolution. It spans from advanced fluorescence imaging of micrometric cell clusters to centimetre-size complete organisms. However, with larger volume specimens, new problems arise. Imaging deeper into tissues at high resolution poses challenges ranging from optical distortions to shadowing from opaque structures. This manuscript discusses the latest developments in mesoscale imaging and highlights limitations, namely labelling, clearing, absorption, scattering, and also sample handling. We then focus on approaches that seek to turn mesoscale imaging into a more quantitative technique, analogous to quantitative tomography in medical imaging, highlighting a future role for digital and physical phantoms as well as artificial intelligence.


This review discusses the state of the art of an emerging field called mesoscale imaging. Mesoscale imaging refers to the trend towards imaging ever-larger samples that exceed the classic microscopy domain and is also referred to as 'mesoscopic imaging'. In optical imaging, this refers to objects between the microscopic and macroscopic scale that are imaged with subcellular resolution; in practice, this implies the imaging of objects from millimetre up to cm size with µm or nm resolution. As such, the mesoscopy field spans the boundary between classic 'biological' imaging and preclinical 'biomedical' imaging, typically utilising lower magnification objective lenses with a bigger field of view. We discuss the types of samples currently imaged with examples, and highlight how this type of imaging fills the gap between microscopic and macroscopic imaging, allowing further insight into the organisation of tissues in an organism. We also discuss the challenges of imaging such large samples, from sample handling to labelling and optical phenomena that stand in the way of quantitative imaging. Finally, we put the current state of the art into context within the neighbouring fields and outline future developments, such as the use of 'phantom' test samples and artificial intelligence for image analysis that will underpin the quality of mesoscale imaging.


Subject(s)
Artificial Intelligence , Imaging, Three-Dimensional , Imaging, Three-Dimensional/methods , Microscopy/methods , Optical Imaging/methods , Tomography/methods
4.
Nano Lett ; 20(6): 4249-4255, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32369369

ABSTRACT

Although near-field imaging techniques reach sub-nanometer resolution on rigid samples, it remains extremely challenging to image soft interfaces, such as biological membranes, due to the deformations induced by the probe. In photonic force microscopy, optical tweezers are used to manipulate and measure the scanning probe, allowing imaging of soft materials without force-induced artifacts. However, the size of the optically trapped probe still limits the maximum resolution. Here, we show a novel and simple nanofabrication protocol to massively produce optically trappable quartz particles which mimic the sharp tips of atomic force microscopy. Imaging rigid nanostructures with our tips, we resolve features smaller than 80 nm. Scanning the membrane of living malaria-infected red blood cells reveals, with no visible artifacts, submicron features termed knobs, related to the parasite activity. The use of nanoengineered particles in photonic force microscopy opens the way to imaging soft samples at high resolution.

SELECTION OF CITATIONS
SEARCH DETAIL
...