Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 252
Filter
1.
Ann Pathol ; 2024 Jun 04.
Article in French | MEDLINE | ID: mdl-38839526

ABSTRACT

Cutaneous adnexal tumours are a heterogeneous group of epithelial lesions that includes tumours with follicular, sudoral and/or sebaceous differentiation, or even several combined lines of differentiation. Over the last few years, molecular analysis of these lesions has allowed to identify specific molecular events responsible for tumour development in an increasing number of tumour types. Like other rare neoplasms, such as soft tissue tumours, adnexal tumours display fusion genes resulting from chromosomal translocations that may be specific for the diagnosis if molecular data are properly integrated in the clinical and morphological setting. Molecular testing of adnexal tumours is valuable as it allows to strengthen the robustness of the diagnosis for a group of tumours displaying a wide morphological spectrum. It has allowed to refine the diagnostic criteria and to develop increasingly specific diagnostic immunostainings. Finally, molecular testing has been responsible for the identification of new entities or morphological subtypes of previously known entities. The aim of this review is to provide an update on cutaneous adnexal tumours associated with fusion genes and to evaluate the impact of molecular data on the diagnosis of these lesions.

5.
Histopathology ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38785043

ABSTRACT

AIMS: Porocarcinoma is a malignant sweat gland tumour differentiated toward the upper part of the sweat duct and may arise from the transformation of a preexisting benign poroma. In 2019, Sekine et al. demonstrated the presence of YAP1::MAML2 and YAP1::NUTM1 fusions in most poromas and porocarcinomas. Recently, our group identified PAK2-fusions in a subset of benign poromas. Herein we report a series of 12 porocarcinoma cases harbouring PAK1/2/3 fusions. METHODS AND RESULTS: Five patients were male and the median age was 79 years (ranges: 59-95). Tumours were located on the trunk (n = 7), on the thigh (n = 3), neck (n = 1), or groin area (n = 1). Four patients developed distant metastases. Microscopically, seven cases harboured a benign poroma component and a malignant invasive part. Ductal formations were observed in all, while infundibular/horn cysts and cells with vacuolated cytoplasm were detected in seven and six tumours, respectively. In three cases, the invasive component consisted of a proliferation of elongated cells, some of which formed pseudovascular spaces, whereas the others harboured a predominant solid or trabecular growth pattern. Immunohistochemical staining for CEA and EMA confirmed the presence of ducts. Focal androgen receptor expression was detected in three specimens. Whole RNA sequencing evidenced LAMTOR1::PAK1 (n = 2), ZDHHC5::PAK1 (n = 2), DLG1::PAK2, CTDSP1::PAK1, CTNND1::PAK1, SSR1::PAK3, CTNNA1::PAK2, RNF13::PAK2, ROBO1::PAK2, and CD47::PAK2. Activating mutation of HRAS (G13V, n = 3, G13R, n = 1, Q61L, n = 2) was present in six cases. CONCLUSION: Our study suggests that PAK1/2/3 fusions is the oncogenic driver of a subset of porocarcinomas lacking YAP1 rearrangement.

6.
Immunol Lett ; 268: 106871, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38801999

ABSTRACT

Cutaneous T-cell lymphomas (CTCL) are a diverse group of malignant blood disorders characterized by initial skin infiltration, and sometimes, tumor spreading to lymph nodes, blood, and viscera. Mycosis fungoides is the most common form. Sézary syndrome is a distinctive form of CTCL marked by a significant presence of circulating tumor cells in peripheral blood. These diseases are characterized by the plasticity and heterogeneity of the tumor cells in the different tissue compartments, and a difficulty in identifying these tumor cells for diagnostic purposes and therapeutic monitoring. Progress has been made in the understanding of the pathophysiology of these diseases in recent years, and we provide here a review of these advancements.

7.
Acta Derm Venereol ; 104: adv34883, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38567913
9.
Skin Health Dis ; 4(2): e334, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38577051

ABSTRACT

CD39, an ectoenzyme in the immunosuppressive CD39/CD73/adenosine pathway, known to promote solid tumour outgrowth and spreading, was investigated in both skin and blood compartments of cutaneous T cell lymphomas. CD39 was overexpressed by peripheral blood T-cells in Sezary syndrome and mycosis fungoides, and in skin-infiltrating lymphocytes of Sezary syndrome, mycosis fungoides, subcutaneous panniculitis-like T-cell lymphoma and primary cutaneous CD30-positive lymphoproliferation. Our study emphasizes the interest in using CD39/CD73/adenosine pathway blocking agents for cutaneous T cell lymphomas treatment.

10.
Oncogene ; 43(21): 1620-1630, 2024 May.
Article in English | MEDLINE | ID: mdl-38570692

ABSTRACT

The role of the focal adhesion protein kindlin-3 as a tumor suppressor and its interaction mechanisms with extracellular matrix constitute a major field of investigation to better decipher tumor progression. Besides the well-described role of kindlin-3 in integrin activation, evidence regarding modulatory functions between melanoma cells and tumor microenvironment are lacking and data are needed to understand mechanisms driven by kindlin-3 inactivation. Here, we show that kindlin-3 inactivation through knockdown or somatic mutations increases BRAFV600mut melanoma cells oncogenic properties via collagen-related signaling by decreasing cell adhesion and enhancing proliferation and migration in vitro, and by promoting tumor growth in mice. Mechanistic analysis reveals that kindlin-3 interacts with the collagen-activated tyrosine kinase receptor DDR1 (Discoidin domain receptor 1) modulating its expression and its interaction with ß1-integrin. Kindlin-3 knockdown or mutational inactivation disrupt DDR1/ß1-integrin complex in vitro and in vivo and its loss improves the anti-proliferative effect of DDR1 inhibition. In agreement, kindlin-3 downregulation is associated with DDR1 over-expression in situ and linked to worse melanoma prognosis. Our study reveals a unique mechanism of action of kindlin-3 in the regulation of tumorigenesis mediated by the collagen-activated tyrosine kinase receptor DDR1 thus paving the way for innovative therapeutic targeting approaches in melanoma.


Subject(s)
Cell Proliferation , Discoidin Domain Receptor 1 , Melanoma , Membrane Proteins , Neoplasm Proteins , Humans , Discoidin Domain Receptor 1/genetics , Discoidin Domain Receptor 1/metabolism , Animals , Melanoma/pathology , Melanoma/genetics , Melanoma/metabolism , Mice , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Cell Proliferation/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Cell Line, Tumor , Integrin beta1/metabolism , Integrin beta1/genetics , Cell Movement/genetics , Cell Adhesion/genetics , Collagen/metabolism , Signal Transduction/genetics , Gene Expression Regulation, Neoplastic
11.
Clin Transl Med ; 14(3): e1632, 2024 03.
Article in English | MEDLINE | ID: mdl-38515278

ABSTRACT

INTRODUCTION: Despite considerable therapeutic advances in the last 20 years, metastatic cancers remain a major cause of death. We previously identified prominin-2 (PROM2) as a biomarker predictive of distant metastases and decreased survival, thus providing a promising bio-target. In this translational study, we set out to decipher the biological roles of PROM2 during the metastatic process and resistance to cell death, in particular for metastatic melanoma. METHODS AND RESULTS: Methods and results: We demonstrated that PROM2 overexpression was closely linked to an increased metastatic potential through the increase of epithelial-to-mesenchymal transition (EMT) marker expression and ferroptosis resistance. This was also found in renal cell carcinoma and triple negative breast cancer patient-derived xenograft models. Using an oligonucleotide anti-sense anti-PROM2, we efficaciously decreased PROM2 expression and prevented metastases in melanoma xenografts. We also demonstrated that PROM2 was implicated in an aggravation loop, contributing to increase the metastatic burden both in murine metastatic models and in patients with metastatic melanoma. The metastatic burden is closely linked to PROM2 expression through the expression of EMT markers and ferroptosis cell death resistance in a deterioration loop. CONCLUSION: Our results open the way for further studies using PROM2 as a bio-target in resort situations in human metastatic melanoma and also in other cancer types.


Subject(s)
Ferroptosis , Melanoma , Humans , Animals , Mice , Ferroptosis/genetics , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Membrane Glycoproteins
16.
Dermatol Clin ; 42(2): 209-217, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38423682

ABSTRACT

In 2005, a new histologic variant of Sweet syndrome (SS) has been described and termed histiocytoid SS (HSS). Clinically, patients had a typical SS, but on skin biopsy, the infiltrates were composed of immature nonblast myeloid cells. Nearly 50% of patients with HSS have myelodysplastic syndrome (MDS). HSS may be the first manifestation leading to the diagnosis of MDS. In 2015, a new category of myeloid dermatosis has been proposed, called myelodysplasia cutis, describing the specific skin infiltration by myelodysplastic cells in patients with MDS.


Subject(s)
Myelodysplastic Syndromes , Sweet Syndrome , Humans , Sweet Syndrome/diagnosis , Skin/pathology , Myelodysplastic Syndromes/complications , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/pathology , Biopsy
17.
Mod Pathol ; 37(3): 100430, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38266920

ABSTRACT

Cutaneous mixed tumors exhibit a wide morphologic diversity and are currently classified into apocrine and eccrine types based on their morphologic differentiation. Some cases of apocrine-type cutaneous mixed tumors (ACMT), namely, hyaline cell-rich apocrine cutaneous mixed tumors (HCR-ACMT) show a prominent or exclusive plasmacytoid myoepithelial component. Although recurrent fusions of PLAG1 have been observed in ACMT, the oncogenic driver of eccrine-type cutaneous mixed tumors (ECMT) is still unknown. The aim of the study was to provide a comprehensive morphologic, immunohistochemical, and molecular characterization of these tumors. Forty-one cases were included in this study: 28 cases of ACMT/HCR-ACMT and 13 cases of ECMT. After morphologic and immunohistochemical characterization, all specimens were analyzed by RNA sequencing. By immunohistochemistry, all cases showed expression of SOX10, but only ACMT/HCR-ACMT showed expression of PLAG1 and HMGA2. RNA sequencing confirmed the presence of recurrent fusion of PLAG1 or HMGA2 in all cases of ACMT/HCR-ACMT, with a perfect correlation with PLAG1/HMGA2 immunohistochemical status, and revealed internal tandem duplications of SOX10 (SOX10-ITD) in all cases of ECMT. Although TRPS1::PLAG1 was the most frequent fusion, HMGA2::WIF1 and HMGA2::NFIB were detected in ACMT cases. Clustering analysis based on gene expression profiling of 110 tumors, including numerous histotypes, showed that ECMT formed a distinct group compared with all other tumors. ACMT, HCR-ACMT, and salivary gland pleomorphic adenoma clustered together, whereas myoepithelioma with fusions of EWSR1, FUS, PBX1, PBX3, POU5F1, and KLF17 formed another cluster. Follow-up showed no evidence of disease in 23 cases across all 3 tumor types. In conclusion, our study demonstrated for the first time SOX10-ITD in ECMT and HMGA2 fusions in ACMT and further refined the prevalence of PLAG1 fusions in ACMT. Clustering analyses revealed the transcriptomic distance between these different tumors, especially in the heterogenous group of myoepitheliomas.


Subject(s)
Adenoma, Pleomorphic , Myoepithelioma , Salivary Gland Neoplasms , Skin Neoplasms , Sweat Gland Neoplasms , Humans , Adenoma, Pleomorphic/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Myoepithelioma/genetics , Myoepithelioma/pathology , Repressor Proteins , Salivary Gland Neoplasms/genetics , Skin Neoplasms/genetics , SOXE Transcription Factors , Sweat Gland Neoplasms/genetics , Transcription Factors
18.
Int J Mol Sci ; 25(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38256221

ABSTRACT

Cutaneous squamous cell carcinomas in kidney-transplant recipients are frequent, with an increasing incidence linked to long immunosuppression durations and exposure to ultraviolet radiation. p53 is at the cornerstone of ultraviolet-induced DNA damage, but the role of p53 post-translational modifications in this context is not yet deciphered. Here, we investigated the phosphorylation status of p53 at Serine 392 in 25 cutaneous squamous cell carcinomas in kidney-transplant recipients, compared with 22 non-transplanted patients. Cutaneous squamous cell carcinomas in transplanted patients occurred after a median period of 19 years of immunosuppression, with a median number of 15 cutaneous squamous cell carcinomas and more aggressive histological and clinical characteristics. There was no significant difference between Ki67, p53, and pSer392p53 expression in the two groups. Using principal component analysis, we identified a cluster of exclusively transplanted patients with a median of 23 years of immunosuppression duration, significantly more aggressive biological characteristics, and higher pSer392p53 expression. pSer392p53 was expressed in the whole tumor, suggesting an early carcinogenic event in the course of prolonged immunosuppression. This high, diffuse pSer392p53 expression, corresponding to a high level of DNA damage, might be useful to identify aggressive cutaneous squamous cell carcinomas in kidney-transplant recipients to treat them more aggressively.


Subject(s)
Carcinoma, Squamous Cell , Transplant Recipients , Humans , Tumor Suppressor Protein p53/genetics , Ultraviolet Rays , Carcinoma, Squamous Cell/genetics , Kidney
19.
Histopathology ; 84(2): 266-278, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37609771

ABSTRACT

Poroma is a benign sweat gland tumour showing morphological features recapitulating the superficial portion of the eccrine sweat coil. A subset of poromas may transform into porocarcinoma, its malignant counterpart. Poroma and porocarcinoma are characterised by recurrent gene fusions involving YAP1, a transcriptional co-activator, which is controlled by the Hippo signalling pathway. The fusion genes frequently involve MAML2 and NUTM1, which are also rearranged in other cutaneous and extracutaneous neoplasms. We aimed to review the clinical, morphological and molecular features of this category of adnexal neoplasms with a special focus upon emerging differential diagnoses, and discuss how their systematic molecular characterisation may contribute to a standardisation of diagnosis, more accurate classification and, ultimately, refinement of their prognosis and therapeutic modalities.


Subject(s)
Eccrine Porocarcinoma , Poroma , Skin Neoplasms , Sweat Gland Neoplasms , Humans , Poroma/genetics , Poroma/metabolism , Poroma/pathology , Eccrine Porocarcinoma/genetics , Eccrine Porocarcinoma/pathology , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Sweat Gland Neoplasms/diagnosis , Skin/pathology , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...