Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 177(1): 62-74, 2018 05.
Article in English | MEDLINE | ID: mdl-29588336

ABSTRACT

A fundamental challenge in plant physiology is independently determining the rates of gross O2 production by photosynthesis and O2 consumption by respiration, photorespiration, and other processes. Previous studies on isolated chloroplasts or leaves have separately constrained net and gross O2 production (NOP and GOP, respectively) by labeling ambient O2 with 18O while leaf water was unlabeled. Here, we describe a method to accurately measure GOP and NOP of whole detached leaves in a cuvette as a routine gas-exchange measurement. The petiole is immersed in water enriched to a δ18O of ∼9,000‰, and leaf water is labeled through the transpiration stream. Photosynthesis transfers 18O from H2O to O2 GOP is calculated from the increase in δ18O of O2 as air passes through the cuvette. NOP is determined from the increase in O2/N2 Both terms are measured by isotope ratio mass spectrometry. CO2 assimilation and other standard gas-exchange parameters also were measured. Reproducible measurements are made on a single leaf for more than 15 h. We used this method to measure the light response curve of NOP and GOP in French bean (Phaseolus vulgaris) at 21% and 2% O2 We then used these data to examine the O2/CO2 ratio of net photosynthesis, the light response curve of mesophyll conductance, and the apparent inhibition of respiration in the light (Kok effect) at both oxygen levels. The results are discussed in the context of evaluating the technique as a tool to study and understand leaf physiological traits.


Subject(s)
Isotope Labeling/methods , Mesophyll Cells/physiology , Oxygen/metabolism , Phaseolus/physiology , Photosynthesis/physiology , Carbon Dioxide/metabolism , Cell Respiration , Light , Oxygen Isotopes , Phaseolus/cytology , Plant Stomata/physiology , Water/chemistry
2.
Nature ; 476(7359): 198-201, 2011 Aug 10.
Article in English | MEDLINE | ID: mdl-21833087

ABSTRACT

Methane and ethane are the most abundant hydrocarbons in the atmosphere and they affect both atmospheric chemistry and climate. Both gases are emitted from fossil fuels and biomass burning, whereas methane (CH(4)) alone has large sources from wetlands, agriculture, landfills and waste water. Here we use measurements in firn (perennial snowpack) air from Greenland and Antarctica to reconstruct the atmospheric variability of ethane (C(2)H(6)) during the twentieth century. Ethane levels rose from early in the century until the 1980s, when the trend reversed, with a period of decline over the next 20 years. We find that this variability was primarily driven by changes in ethane emissions from fossil fuels; these emissions peaked in the 1960s and 1970s at 14-16 teragrams per year (1 Tg = 10(12) g) and dropped to 8-10 Tg yr(-1) by the turn of the century. The reduction in fossil-fuel sources is probably related to changes in light hydrocarbon emissions associated with petroleum production and use. The ethane-based fossil-fuel emission history is strikingly different from bottom-up estimates of methane emissions from fossil-fuel use, and implies that the fossil-fuel source of methane started to decline in the 1980s and probably caused the late twentieth century slow-down in the growth rate of atmospheric methane.


Subject(s)
Atmosphere/chemistry , Ethane/analysis , Fossil Fuels , Methane/analysis , Snow/chemistry , Antarctic Regions , Biofuels , Biomass , Fires , Fossil Fuels/history , Fossil Fuels/statistics & numerical data , Geography , Greenland , History, 20th Century , History, 21st Century , Ice/analysis , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...