Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Plant ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39014898

ABSTRACT

Plants exploit phenotypic plasticity to adapt their growth and development to prevailing environmental conditions. Interpretation of light and temperature signals are aided by the circadian system which provides a temporal context. Phenotypic plasticity provides a selective and competitive advantage in nature but is obstructive during large-scale, intensive agricultural practices since economically important traits (including vegetative growth and flowering time) can widely vary depending on local environmental conditions. This prevents accurate prediction of harvesting times and produces a variable crop. We sought to restrict phenotypic plasticity and circadian regulation by manipulating signalling systems that govern plants' responses to environmental signals. Mathematical modelling of plant growth and development predicted reduced plant responses to changing environments when circadian and light signaling pathways were manipulated. We tested this hypothesis by utilising a constitutively-active allele of the plant photoreceptor phytochromeB, along with disruption of the circadian system via mutation of EARLY FLOWERING3. We found that these manipulations produced plants that were less responsive to light and temperature cues and which failed to anticipate dawn. These engineered plants have uniform vegetative growth and flowering time, demonstrating how phenotypic plasticity can be limited whilst maintaining plant productivity. This has significant implications for future agriculture in both open fields and controlled environments.

2.
J Exp Bot ; 74(18): 5805-5819, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37453132

ABSTRACT

The circadian clock system acts as an endogenous timing reference that coordinates many metabolic and physiological processes in plants. Previous studies have shown that the application of osmotic stress delays circadian rhythms via 3'-phospho-adenosine 5'-phosphate (PAP), a retrograde signalling metabolite that is produced in response to redox stress within organelles. PAP accumulation leads to the inhibition of exoribonucleases (XRNs), which are responsible for RNA degradation. Interestingly, we are now able to demonstrate that post-transcriptional processing is crucial for the circadian response to osmotic stress. Our data show that osmotic stress increases the stability of specific circadian RNAs, suggesting that RNA metabolism plays a vital role in circadian clock coordination during drought. Inactivation of XRN4 is sufficient to extend circadian rhythms as part of this response, with PRR7 and LWD1 identified as transcripts that are post-transcriptionally regulated to delay circadian progression.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Circadian Clocks , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Osmotic Pressure , Circadian Rhythm/genetics , Circadian Clocks/genetics , RNA Stability , Gene Expression Regulation, Plant
3.
Plant Cell Environ ; 43(1): 16-27, 2020 01.
Article in English | MEDLINE | ID: mdl-31410859

ABSTRACT

Plants are acutely sensitive of their light environment, adapting their growth habit and prioritizing developmental decisions to maximize fecundity. In addition to providing an energy source and directional information, light quality also contributes to entrainment of the circadian system, an endogenous timing mechanism that integrates endogenous and environmental signalling cues to promote growth. Whereas plants' perception of red and blue portions of the spectrum are well defined, green light sensitivity remains enigmatic. In this study, we show that low fluence rates of green light are sufficient to entrain and maintain circadian rhythms in Arabidopsis and that cryptochromes contribute to this response. Importantly, green light responses are distinguishable from low blue light-induced phenotypes. These data suggest a distinct signalling mechanism enables entrainment of the circadian system in green light-enriched environments, such as those found in undergrowth and in densely planted monoculture.


Subject(s)
Circadian Rhythm , Cryptochromes/metabolism , Light , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cryptochromes/genetics , Phytochrome/metabolism , Plant Development/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...