Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 9(10)2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31627377

ABSTRACT

Corrosion accounts for huge maintenance cost in the pipeline community. Promotion of protective coatings used for oil/gas pipeline corrosion control, in terms of high corrosion resistance as well as high damage tolerance, are still in high demand. This study was to explore the inclusion of nanoparticle fullerene-C60 in protective coatings for oil/gas pipeline corrosion control and mitigation. Fullerene-C60/epoxy nanocomposite coatings were fabricated using a solvent-free dispersion method through high-speed disk (HSD) and ultrasonication. The morphology of fullerene-C60 particles was characterized by transmission electron microscopy (TEM), and dynamic light scattering (DLS). The data analysis indicated that the nanoparticles were effectively dispersed in the matrix. The performance of the nanocomposites was investigated through their mechanical and electrochemical properties, including corrosion potential, tensile strength, strain at failure, adhesion to substrate, and durability performance. Dogbone shaped samples were fabricated to study the tensile properties of the nanocomposites, and improvement of strength, ultimate strain, and Young's modulus were observed in the C60/epoxy specimens. The results demonstrated that the C60/epoxy composite coatings also had improvements in adhesion strength, suggesting that they could provide high damage tolerance of coatings for engineering applications. Moreover, the electrochemical impedance spectroscopy (EIS) results generated from the accelerated durability test revealed that the developed fullerene-C60 loaded composite coatings exhibited significantly improved corrosion resistance. The nanocomposite with 0.5 and 1.0 wt.% of C60 particles behaved as an intact layer for corrosion protection, even after 200-h salt spray exposure, as compared to the control coating without nanofiller in which severe damage by over 50% reduction was observed.

2.
Nanomaterials (Basel) ; 8(12)2018 Dec 04.
Article in English | MEDLINE | ID: mdl-30518068

ABSTRACT

Corrosion and corrosion-induced damage have resulted mostly in malfunctions and sometimes even in failures of metallic structures, including oil and gas pipelines. In this study, new high-performance composite coatings were developed by incorporating nanoparticles in the polymer resins with applications to oil and gas pipelines. The graphene nanoplatelets under different concentrations were used to prepare the epoxy-based nanocomposites and were then evaluated through mechanical and electrical tests. The integration of high-speed disk and ultrasonication were adopted as the dispersion technique to overcome nanoparticle agglomeration. Electron microscopy techniques were used to investigate the agglomeration. The new composites were qualitatively and quantitatively evaluated in terms of contact angle, surface roughness, adhesion to the substrate, corrosion resistance, and abrasion resistance. The results suggested that the composite with 0.5~1.0 wt.% of the graphene nanofillers led to the largest improvement in both mechanical and electrochemical properties. Distribution of nanoparticles in the matrix was observed using scanning electron microscopy and surface roughness using atomic force microscopy. Large agglomeration that was observed at the higher concentrations mainly resulted in the reduction of corrosion resistance and abrasion resistance.

SELECTION OF CITATIONS
SEARCH DETAIL
...