Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Oncogene ; 27(41): 5464-76, 2008 Sep 18.
Article in English | MEDLINE | ID: mdl-18794881

ABSTRACT

The PTEN tumour suppressor is a lipid and protein phosphatase that inhibits phosphoinositide 3-kinase (PI3K)-dependent signalling by dephosphorylating phosphatidylinositol 3,4,5-trisphosphate (PtdInsP(3)). Here, we discuss the concept of PTEN as an 'interfacial enzyme', which exists in a high activity state when bound transiently at membrane surfaces containing its substrate and other acidic lipids, such as PtdIns(4,5)P(2) and phosphatidylserine (PtdSer). This mechanism ensures that PTEN functions in a spatially restricted manner, and may explain its involvement in forming the gradients of PtdInsP(3), which are necessary for generating and/or sustaining cell polarity during motility, in developing neurons and in epithelial tissues. Coordinating PTEN activity with alternative mechanisms of PtdInsP(3) metabolism, by the tightly regulated SHIP 5-phoshatases, synthesizing the independent second messenger PtdIns(3,4)P(2), may also be important for cellular polarization in some cell types. Superimposed on this interfacial mechanism are additional post-translational regulatory processes, which generally act to reduce PTEN activity. Oxidation of the active site cysteine residue by reactive oxygen species and phosphorylation of serine/threonine residues at sites in the C-terminus of the protein inhibit PTEN. These phosphorylation sites also appear to play a role in regulating both stability and localization of PTEN, as does ubiquitination of PTEN. Because genetic studies in mice show that the level of expression of PTEN in an organism profoundly influences tumour susceptibility, factors that regulate PTEN, localization, activity and turnover should be important in understanding its biological functions as a tumour suppressor.


Subject(s)
Cell Polarity/physiology , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Protein Processing, Post-Translational , Animals , Cell Membrane/chemistry , Cell Membrane/metabolism , Humans , Mice , Models, Biological , Phosphatidylinositol Phosphates/metabolism , Phosphorylation
2.
Oncogene ; 26(50): 7132-42, 2007 Nov 01.
Article in English | MEDLINE | ID: mdl-17486056

ABSTRACT

Many tumors have chronically elevated activity of PI 3-kinase-dependent signaling pathways, caused largely by oncogenic mutation of PI 3-kinase itself or loss of the opposing tumor suppressor lipid phosphatase, PTEN. Several PI 3-kinase-dependent feedback mechanisms have been identified that may affect the sensitivity of upstream receptor signaling, but the events required to initiate an inhibited state have not been addressed. We show that in a variety of cell types, loss of PTEN via experimental knockdown or in tumor cell lines correlates with a block in insulin-like growth factor 1 (IGF1)/insulin signaling, without affecting the sensitivity of platelet-derived growth factor or epidermal growth factor signaling. These effects on IGF/insulin signaling include a reduction of up to five- to tenfold in IGF-stimulated PI 3-kinase activation, a failure to activate the ERK kinases and, in some cells, reduced expression of insulin receptor substrate 1, and both IGF1 and insulin receptors. These data indicate that chronically elevated PI 3-kinase-dependent signaling to the degree seen in many tumors causes a selective loss of sensitivity in IGF1/insulin signaling that could significantly reduce the selective advantage of deregulated activation of IGF1/IGF1-R signaling in tumor development.


Subject(s)
Insulin-Like Growth Factor I/physiology , Insulin/metabolism , PTEN Phosphohydrolase/deficiency , PTEN Phosphohydrolase/genetics , Signal Transduction/genetics , Animals , Cell Line , Cell Line, Tumor , Dogs , Humans , Insulin/physiology , Insulin-Like Growth Factor I/antagonists & inhibitors , Mice , NIH 3T3 Cells , PTEN Phosphohydrolase/physiology , Phosphatidylinositol 3-Kinases/biosynthesis , Phosphatidylinositol 3-Kinases/physiology , Phosphatidylinositol Phosphates/biosynthesis , Phosphatidylinositol Phosphates/metabolism
3.
Biochem Soc Trans ; 35(Pt 2): 188-92, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17371235

ABSTRACT

The lipid phosphatase, PTEN (phosphatase and tensin homologue deleted on chromosome 10), is the product of a major tumour suppressor gene that antagonizes PI3K (phosphoinositide 3-kinase) signalling by dephosphorylating the 3-position of the inositol ring of PtdIns(3,4,5)P(3). PtdIns(3,4,5)P(3) is also metabolized by removal of the 5-phosphate catalysed by a distinct family of enzymes exemplified by SHIP1 [SH2 (Src homology 2)-containing inositol phosphatase 1] and SHIP2. Mouse knockout studies, however, suggest that PTEN and SHIP2 have profoundly different biological functions. One important reason for this is likely to be that SHIP2 exists in a relatively inactive state until cells are exposed to growth factors or other stimuli. Hence, regulation of SHIP2 is geared towards stimulus dependent antagonism of PI3K signalling. PTEN, on the other hand, appears to be active in unstimulated cells and functions to maintain basal PtdIns(3,4,5)P(3) levels below the critical signalling threshold. We suggest that concomitant inhibition of cysteine-dependent phosphatases, such as PTEN, with activation of SHIP2 functions as a metabolic switch to regulate independently the relative levels of PtdIns(3,4,5)P(3) and PtdIns(3,4)P(2).


Subject(s)
Lipids/physiology , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Acid Anhydride Hydrolases/metabolism , Homeostasis , Humans , Inositol Phosphates/metabolism , Leptin/physiology , Mutation , Oxidative Stress , PTEN Phosphohydrolase/genetics , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases , Phosphoproteins/metabolism , Phosphoric Monoester Hydrolases/metabolism , Signal Transduction
4.
Biochem Soc Trans ; 33(Pt 6): 1303-7, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16246104

ABSTRACT

Inositol phospholipids [PIs (phosphoinositides)] represent a group of membrane-tethered signalling molecules which differ with respect to the number and distribution of monoester phosphate groups around the inositol ring. They function by binding to proteins which possess one of several domains that bind a particular PI species, often with high affinity and specificity. PH (pleckstrin homology) domains for example possess ligand-binding pockets that are often lined with positively charged residues and which bind PIs with varying degrees of specificity. Several PH domains bind not only PIs, but also their cognate headgroups, many of which occur naturally in cells as relatively abundant cytosolic inositol phosphates. The subcellular distributions of proteins possessing such PH domains are therefore determined by the relative levels of competing membrane-bound and soluble ligands. A classic example of the latter is the PH domain of phospholipase Cdelta1, which binds both phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate. We have shown that the N-terminal PH domain of the Rho family guanine nucleotide-exchange factor, Tiam 1, binds PI ligands promiscuously allowing multiple modes of regulation. We also recently analysed the ligand-binding specificity of the PH domain of PI-dependent kinase 1 and found that it could bind abundant inositol polyphosphates such as inositol hexakisphosphate. This could explain the dual distribution of this key signalling component, which needs to access substrates at both the plasma membrane and in the cytosol.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Membrane/metabolism , Cytoplasm/metabolism , Phosphatidylinositols , Second Messenger Systems/physiology , 3-Phosphoinositide-Dependent Protein Kinases , Cell Membrane/chemistry , Guanine Nucleotide Exchange Factors/metabolism , Humans , Ligands , Neoplasm Proteins/metabolism , Phosphatidylinositols/chemistry , Phosphatidylinositols/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary , Recombinant Fusion Proteins/metabolism , T-Lymphoma Invasion and Metastasis-inducing Protein 1
5.
Biochem Soc Trans ; 32(Pt 2): 338-42, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15046604

ABSTRACT

PTEN (phosphatase and tensin homologue deleted on chromosome 10) is a member of the protein tyrosine phosphatase family that is structurally adapted to facilitate the metabolism of 3-phosphoinositide lipid second messengers, especially PtdIns(3,4,5) P (3). Cellular PTEN activity is restrained by the retention of C-terminally phosphorylated enzyme in the cytosol. Dephosphorylation by as yet undefined phosphatases initiates an electrostatic switch which targets PTEN specifically to the plasma membrane, where it binds through multiple positively charged residues in both the C2 and N-terminal domains and is susceptible to feedback regulation through proteolytic degradation. PTEN also forms signalling complexes with PDZ domain-containing adaptors, such as the MAGUK (membrane-associated guanylate kinase) proteins, interactions which appear to be necessary for metabolism of localized pools of PtdIns(3,4,5) P (3) involved in regulating actin cytoskeleton dynamics. TPIP [TPTE (transmembrane phosphatase with tensin homology) and PTEN homologous inositol lipid phosphatase] is a novel gene product which exists in multiply spliced forms. TPIPalpha has PtdIns(3,4,5) P (3) 3-phosphatase activity and is localized to the endoplasmic reticulum, via two transmembrane spanning regions, where it may metabolize PtdIns(3,4,5) P (3) that appears to be unaffected by expressed PTEN. PTEN can be acutely regulated by oxidative stress and by endogenously produced reactive oxygen species. This mechanism provides a novel means to stimulate phosphoinositide 3-kinase-dependent signalling pathways, which may be important in circumstances where PtdIns(3,4,5) P (3) and oxidants are produced concurrently.


Subject(s)
Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Lipids/chemistry , Oxidation-Reduction , Phosphoric Monoester Hydrolases/chemistry , Reactive Oxygen Species , Tumor Suppressor Proteins/chemistry , Amino Acid Sequence , Anions , Binding Sites , Catalytic Domain , Cytosol/metabolism , Humans , Kinetics , Molecular Sequence Data , Oxidants/chemistry , Oxidative Stress , Oxygen/chemistry , PTEN Phosphohydrolase , Phosphorylation , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Signal Transduction , Time Factors
6.
Diabetologia ; 44(2): 173-83, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11270673

ABSTRACT

AIMS/HYPOTHESIS: Increased cellular production of ceramide has been implicated in the pathogenesis of insulin resistance and in the impaired utilisation of glucose. In this study we have used L6 muscle cells to investigate the mechanism by which the short-chain ceramide analogue, C2-ceramide, promotes a loss in insulin sensitivity leading to a reduction in insulin stimulated glucose transport and glycogen synthesis. METHOD: L6 muscle cells were pre-incubated with C2-ceramide and the effects of insulin on glucose transport, glycogen synthesis and the activities of key molecules involved in proximal insulin signalling determined. RESULTS: Incubation of L6 muscle cells with ceramide (100 micromol/l) for 2 h led to a complete loss of insulin-stimulated glucose transport and glycogen synthesis. This inhibition was not due to impaired insulin receptor substrate 1 phosphorylation or a loss in phosphoinositide 3-kinase activation but was caused by a failure to activate protein kinase B. This defect could not be attributed to inhibition of 3-phosphoinositide-dependent kinase-1, or to impaired binding of phosphatidylinositol 3,4,5 triphosphate (PtdIns(3,4,5)P3) to the PH domain of protein kinase B, but results from the inability to recruit protein kinase B to the plasma membrane. Expression of a membrane-targetted protein kinase B led to its constitutive activation and an increase in glucose transport that was not inhibited by ceramide. CONCLUSIONS/INTERPRETATION: These findings suggest that a defect in protein kinase B recruitment underpins the ceramide-induced loss in insulin sensitivity of key cell responses such as glucose transport and glycogen synthesis in L6 cells. They also suggest that a stimulated rise in PtdIns(3,4,5)P3 is necessary but not sufficient for protein kinase B activation in this system.


Subject(s)
Cell Membrane/enzymology , Insulin/pharmacology , Muscle, Skeletal/enzymology , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins/metabolism , Signal Transduction , Sphingosine/pharmacology , Biological Transport/drug effects , Cell Line , Enzyme Activation/drug effects , Glucose/metabolism , Glycogen/biosynthesis , Inositol Phosphates/metabolism , Insulin Receptor Substrate Proteins , Okadaic Acid/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Phosphoproteins/metabolism , Phosphoric Monoester Hydrolases/pharmacology , Phosphorylation , Proto-Oncogene Proteins c-akt , Sphingosine/analogs & derivatives
7.
J Biol Chem ; 275(15): 11249-56, 2000 Apr 14.
Article in English | MEDLINE | ID: mdl-10753934

ABSTRACT

Stimulation of serum-starved human embryonic kidney (HEK) 293 cells with either the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), or insulin resulted in increases in the phosphorylation of 4E-BP1 and p70 S6 kinase, eIF4F assembly, and protein synthesis. All these effects were blocked by rapamycin, a specific inhibitor of mTOR. Phosphatidylinositol 3-kinase and protein kinase B were activated by insulin but not by TPA. Therefore TPA can induce eIF4F assembly, protein synthesis, and the phosphorylation of p70 S6 kinase and 4E-BP1 independently of both phosphatidylinositol 3-kinase and protein kinase B. Using two structurally unrelated inhibitors of MEK (PD098059 and U0126), we provide evidence that Erk activation is important in TPA stimulation of eIF4F assembly and the phosphorylation of p70 S6 kinase and 4E-BP1 and that basal MEK activity is important for basal, insulin, and TPA-stimulated protein synthesis. Transient transfection of constitutively active mitogen-activated protein kinase interacting kinase 1 (the eIF4E kinase) indicated that inhibition of protein synthesis and eIF4F assembly by PD098059 is not through inhibition of eIF4E phosphorylation but of other signals emanating from MEK. This report also provides evidence that increased eIF4E phosphorylation alone does not affect the assembly of the eIF4F complex or general protein synthesis.


Subject(s)
Carrier Proteins , Insulin/pharmacology , Peptide Initiation Factors/chemistry , Protein Biosynthesis , Protein Serine-Threonine Kinases , Tetradecanoylphorbol Acetate/pharmacology , Adaptor Proteins, Signal Transducing , Cell Cycle Proteins , Cell Line , Eukaryotic Initiation Factor-4F , Flavonoids/pharmacology , Humans , Mitogen-Activated Protein Kinases/physiology , Peptide Initiation Factors/biosynthesis , Phosphatidylinositol 3-Kinases/physiology , Phosphoproteins/metabolism , Phosphorylation , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-akt , Ribosomal Protein S6 Kinases/metabolism
8.
J Biol Chem ; 274(19): 13563-8, 1999 May 07.
Article in English | MEDLINE | ID: mdl-10224126

ABSTRACT

In this study we show that serotonin (5-hydroxytryptamine (5-HT)) causes a rapid stimulation in glucose uptake by approximately 50% in both L6 myotubes and isolated rat skeletal muscle. This activation is mediated via the 5-HT2A receptor, which is expressed in L6, rat, and human skeletal muscle. In L6 cells, expression of the 5-HT2A receptor is developmentally regulated based on the finding that receptor abundance increases by over 3-fold during differentiation from myoblasts to myotubes. Stimulation of the 5-HT2A receptor using methylserotonin (m-HT), a selective 5-HT2A agonist, increased muscle glucose uptake in a manner similar to that seen in response to 5-HT. The agonist-mediated stimulation in glucose uptake was attributable to an increase in the plasma membrane content of GLUT1, GLUT3, and GLUT4. The stimulatory effects of 5-HT and m-HT were suppressed in the presence of submicromolar concentrations of ketanserin (a selective 5-HT2A antagonist) providing further evidence that the increase in glucose uptake was specifically mediated via the 5-HT2A receptor. Treatment of L6 cells with insulin resulted in tyrosine phosphorylation of IRS1, increased cellular production of phosphatidylinositol 3,4,5-phosphate and a 41-fold activation in protein kinase B (PKB/Akt) activity. In contrast, m-HT did not modulate IRS1, phosphoinositide 3-kinase, or PKB activity. The present results indicate that rat and human skeletal muscle both express the 5-HT2A receptor and that 5-HT and specific 5-HT2A agonists can rapidly stimulate glucose uptake in skeletal muscle by a mechanism which does not depend upon components that participate in the insulin signaling pathway.


Subject(s)
Glucose/metabolism , Muscle, Skeletal/metabolism , Protein Serine-Threonine Kinases , Serotonin/physiology , Animals , Biological Transport , Humans , Insulin/pharmacology , Insulin Receptor Substrate Proteins , Monosaccharide Transport Proteins/metabolism , Muscle, Skeletal/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Phosphoproteins/metabolism , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-akt , Rats , Receptor, Serotonin, 5-HT2A , Receptors, Serotonin/metabolism
9.
Proc Natl Acad Sci U S A ; 95(23): 13513-8, 1998 Nov 10.
Article in English | MEDLINE | ID: mdl-9811831

ABSTRACT

Since their discovery, protein tyrosine phosphatases have been speculated to play a role in tumor suppression because of their ability to antagonize the growth-promoting protein tyrosine kinases. Recently, a tumor suppressor from human chromosome 10q23, called PTEN or MMAC1, has been identified that shares homology with the protein tyrosine phosphatase family. Germ-line mutations in PTEN give rise to several related neoplastic disorders, including Cowden disease. A key step in understanding the function of PTEN as a tumor suppressor is to identify its physiological substrates. Here we report that a missense mutation in PTEN, PTEN-G129E, which is observed in two Cowden disease kindreds, specifically ablates the ability of PTEN to recognize inositol phospholipids as a substrate, suggesting that loss of the lipid phosphatase activity is responsible for the etiology of the disease. Furthermore, expression of wild-type or substrate-trapping forms of PTEN in HEK293 cells altered the levels of the phospholipid products of phosphatidylinositol 3-kinase and ectopic expression of the phosphatase in PTEN-deficient tumor cell lines resulted in the inhibition of protein kinase (PK) B/Akt and regulation of cell survival.


Subject(s)
Genes, Tumor Suppressor , Germ-Line Mutation , Phosphoric Monoester Hydrolases/genetics , Protein Tyrosine Phosphatases , Tumor Suppressor Proteins , Cell Line , Escherichia coli , Humans , PTEN Phosphohydrolase , Phosphoric Monoester Hydrolases/chemistry , Phosphoric Monoester Hydrolases/metabolism
10.
Biochem J ; 330 ( Pt 3): 1069-77, 1998 Mar 15.
Article in English | MEDLINE | ID: mdl-9494070

ABSTRACT

The compartmentation of inositol phospholipids was examined by using a combination of radiolabelling approaches in intact and permeabilized 1321N1 astrocytoma cells. A 'chase' protocol was developed with whole cells in which phosphoinositide (PI) pools were labelled to steady state with [3H]inositol and the cellular [3H]inositol pool was then diluted selectively with non-radioactive inositol. In these cells muscarinic-receptor-stimulated phospholipase C (PLC) hydrolysed [3H]PI at approx. 1-2%/min. However, after the chase procedure the relative specific radioactivity of [3H]Ins(1,3,4)P3, a rapidly metabolized and sensitive marker of PLC activity, decreased only after more than 5 min and over a time course similar to that during which the labelling of each [3H]PtdIns, [3H]PtdInsP and [3H]PtdInsP2 declined by at least 50%. These results demonstrate a large receptor-responsive [3H]PI pool that is accessed by stimulated PLC without apparent metabolic compartmentation, despite its probable distribution between different membrane fractions. Support for this was obtained in intact cells by using an acute [3H]inositol labelling method in which increases in the specific radioactivity of [3H]inositol phosphates stimulated by carbachol occurred only in parallel with similar increases in the labelling of the bulk of cellular [3H]PI. In [3H]inositol-prelabelled cells permeabilized to deplete cytosolic proteins, carbachol and guanosine 5'-[gamma-thio]triphosphate stimulated the endogenous PLC to degrade only approx. 5% of [3H]PI. This was increased to approx. 30% in the presence of exogenous PtdIns transfer protein, which, at a concentration approx. 5-10% of that in 1321N1 cell cytosol, was sufficient to support PLC activity comparable with that observed in response to carbachol in whole cells. These and earlier results in 1321N1 cells suggest a model of integrated PI pools involving an obligatory role for lipid transport. Given the multifunctional capacity of PI in cellular signalling mechanisms, this model has important implications, particularly for the hypothesis that the ability of Li+ ions to influence these selectively might account for its therapeutic actions.


Subject(s)
Carbachol/pharmacology , Phosphatidylinositols/metabolism , Receptors, Muscarinic/physiology , Type C Phospholipases/metabolism , Astrocytoma , Cell Compartmentation , Cell Membrane Permeability , Cytosol/metabolism , Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology , Humans , Inositol/metabolism , Kinetics , Models, Biological , Phosphatidylinositol Phosphates/metabolism , Receptors, Muscarinic/drug effects , Tumor Cells, Cultured
11.
J Biol Chem ; 273(1): 13-6, 1998 Jan 02.
Article in English | MEDLINE | ID: mdl-9417038

ABSTRACT

The aggregation of human platelets is an important physiological hemostatic event contingent upon receptor-dependent activation of the surface integrin alphaIIbbeta3 and subsequent binding of fibrinogen. Aggregating platelets form phosphatidylinositol 3, 4-bisphosphate (PtdIns(3,4)P2), which has been reported to stimulate in vitro the activity of the proto-oncogenic protein kinase PKB/Akt, as has phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3). It has been assumed that PtdIns(3,4)P2 is synthesized by either 5-phosphatase-catalyzed hydrolysis of PtdIns(3,4,5)P3 produced by phosphoinositide 3-kinase (PI3K) or phosphorylation by PI3K of PtdIns4P. We investigated the route(s) by which PtdIns(3,4)P2 is formed after directly activating alphaIIbbeta3 with anti-ligand-induced binding site Fab fragment and report that aggregation does not lead to the generation of PtdIns(3,4,5)P3, but to transient formation of PtdIns3P and generation of PtdIns(3,4)P2, the latter primarily by PtdIns3P 4-kinase. Both this novel pathway and the activation of PKB/Akt are inhibited by the PI3K inhibitor, wortmannin, and the calpain inhibitor, calpeptin, constituting the first evidence that PtdIns(3,4)P2 can stimulate PKB/Akt in vivo in the absence of PtdIns(3,4,5)P3. Integrin-activated generation of the second messenger PtdIns(3,4)P2 thus depends upon a route distinct from that known to be utilized initially by growth factors. This pathway is of potential general relevance to the function of integrins.


Subject(s)
Blood Platelets/metabolism , Integrins/metabolism , Phosphatidylinositol Phosphates/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , 3-Phosphoinositide-Dependent Protein Kinases , Androstadienes/pharmacology , Cells, Cultured , Humans , Proto-Oncogene Proteins c-akt , Signal Transduction , Wortmannin
12.
Eur J Biochem ; 247(1): 306-13, 1997 Jul 01.
Article in English | MEDLINE | ID: mdl-9249041

ABSTRACT

A characteristic response of cells subjected to a stress stimulus is a rapid activation of cellular glucose transport. The mechanisms governing this increase in glucose transport are poorly understood, but it has been suggested that the response may involve the intracellular-signaling components that also participate in the hormonal activation of glucose transport. In skeletal muscle and fat tissue, inositol phospholipid 3-kinase plays an integral role in the regulation of both basal and insulin-stimulated glucose transport. In this study, we have investigated whether inositol phospholipid 3-kinase is activated by chemical stress and, if so, whether it has a role to play in the stress-induced increase in glucose transport in L6 muscle cells. Furthermore, we have attempted to assess the basis by which inositol phospholipid 3-kinase may participate in the regulation of basal glucose transport. Acute exposure (30 min) of L6 muscle cells to 0.5 mM arsenite induced an 80% stimulation in glucose transport. This activation was due to a rise in the number of cell-surface glucose transporters, based on an increase in the Vmax of glucose transport and the observation that arsenite increases the plasma membrane content of GLUT1 and GLUT4 glucose transporters by 95% and 60%, respectively, from an intracellular compartment. Arsenite induced rapid activation (< 2 min) of inositol phospholipid 3-kinase with an approximately fourfold increase in phosphatidylinositol 3,4,5-trisphosphate (PtdIns3,4,5P3). In contrast, phosphatidylinositol 3-phosphate (PtdIns3P) levels were unaffected. Prior treatment of L6 cells with 100 nM wortmannin suppressed the arsenite-induced increase in PtdIns3,4,5P3 and reduced the cellular content of PtdIns3P by 50%. Under these conditions however, wortmannin failed to prevent the stress-induced activation of glucose transport, but suppressed basal glucose transport by 60% with an IC50 of about 10 nM. In the absence of arsenite, wortmannin caused a dose-dependent inhibition in the cellular levels of PtdIns3P and PtdIns3,4,5P3 with IC50 values of about 10 nM and 100 nM, respectively. In summary, the present results demonstrate that chemical stress activates inositol phospholipid 3-kinase and glucose transport in L6 muscle cells, but unlike the hormonal responses of these cells the activation of inositol phospholipid 3-kinase is not responsible for the stress-induced increase in glucose transport. This implies that stress-induced and hormonal stimulated increases in PtdIns3,4,5P3 levels are functionally distinct. By contrast, the maintenance of PtdIns3P levels, presumably involving a PtdIns-specific, wortmannin-sensitive inositol phospholipid 3-kinase may be required to support basal glucose transport.


Subject(s)
Arsenites/pharmacology , Glucose/metabolism , Muscle Proteins , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Phosphotransferases (Alcohol Group Acceptor)/physiology , Androstadienes/pharmacology , Animals , Cells, Cultured , Deoxyglucose/metabolism , Enzyme Activation , Glucose Transporter Type 1 , Glucose Transporter Type 4 , Monosaccharide Transport Proteins/analysis , Phosphatidylinositol 3-Kinases , Phosphatidylinositols/analysis , Rats , Wortmannin
13.
J Biol Chem ; 272(9): 5477-81, 1997 Feb 28.
Article in English | MEDLINE | ID: mdl-9038150

ABSTRACT

The pivotal role of phosphatidylinositol 3-kinase (PI 3-kinase) in signal transduction has been well established in recent years. Receptor-regulated forms of PI 3-kinase are thought to phosphorylate phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) at the 3-position of the inositol ring to give the putative lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4, 5)P3). Cellular levels of PtdIns(3,4,5)P3 are currently measured by time-consuming procedures involving radiolabeling with high levels of 32PO4, extraction, and multiple chromatography steps. To avoid these lengthy and hazardous procedures, many laboratories prefer to assay PI 3-kinase activity in cell extracts and/or appropriate immunoprecipitates. Such approaches are not readily applied to measurements of PtdIns(3,4,5)P3 in extracts of animal tissues. Moreover, they can be misleading since the association of PI 3-kinases in molecular complexes is not necessarily correlated with the enzyme's activity state. Direct measurements of PtdIns(3,4,5)P3 would also be desirable since its concentration may be subject to additional control mechanisms such as activation or inhibition of the phosphatases responsible for PtdIns(3,4,5)P3 metabolism. We now report a simple, reproducible isotope dilution assay which detects PtdIns(3,4,5)P3 at subpicomole sensitivity, suitable for measurements of both basal and stimulated levels of PtdIns(3,4,5)P3 obtained from samples containing approximately 1 mg of cellular protein. Total lipid extracts, containing PtdIns(3,4,5)P3, are first subjected to alkaline hydrolysis which results in the release of the polar head group Ins(1,3,4,5)P4. The latter is measured by its ability to displace [32P]Ins(1,3,4,5)P4 from a highly specific binding protein present in cerebellar membrane preparations. We show that this assay solely detects PtdIns(3,4,5)P3 and does not suffer from interference by other compounds generated after alkaline hydrolysis of total cellular lipids. Measurements on a wide range of cells, including rat-1 fibroblasts, 1321N1 astrocytoma cells, HEK 293 cells, and rat adipocytes, show wortmannin-sensitive increased levels of PtdIns(3,4,5)P3 upon stimulation with appropriate agonists. The enhanced utility of this procedure is further demonstrated by measurements of PtdIns(3,4,5)P3 levels in tissue derived from whole animals. Specifically, we show that stimulation with insulin increases PtdIns(3,4,5)P3 levels in rat skeletal muscle in vivo with a time course which parallels the activation of protein kinase B in the same samples.


Subject(s)
Insulin/pharmacology , Muscle, Skeletal/drug effects , Phosphatidylinositol Phosphates/analysis , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Animals , Brain/enzymology , Hydrogen-Ion Concentration , Kinetics , Muscle, Skeletal/metabolism , Phosphatidylinositol 3-Kinases , Phosphatidylinositol Phosphates/metabolism , Rats , Sensitivity and Specificity , Tumor Cells, Cultured
14.
Biochem Soc Trans ; 25(4): 1132-7, 1997 Nov.
Article in English | MEDLINE | ID: mdl-9449962

ABSTRACT

1321N1 astrocytoma cells have proved a valuable model system in which to study interactions between two major PtdIns (4,5) P2-utilizing signaling pathways, since they possess receptor populations which elicit independent activation of PI 3-kinase and a G-protein-dependent PLC respectively. Activation of PLC down-regulates PI 3-kinase by at least two mechanisms involving inhibition of IRS-1-associated PI 3-kinase and acute activation of a PtdIns (3,4,5) P3 5-phosphatase. PKB, which is an important early PI 3-kinase-dependent component of insulin signalling pathways, is also down-regulated by PLC-coupled agonists. The activation of PKB by insulin appears to involve a novel PtdIns (3,4,5) P3-dependent protein kinase, which we have named PDK1. The molecular mechanisms underlying PtdIns (3,4,5) P3-stimulated phosphorylation and activation of PKB by PDK1 are currently under investigation.


Subject(s)
Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol Phosphates/metabolism , Signal Transduction , Type C Phospholipases/metabolism , Animals , Astrocytoma , GTP-Binding Proteins/metabolism , Insulin/physiology , Insulin Receptor Substrate Proteins , Phosphoproteins/metabolism , Thrombin/physiology , Tumor Cells, Cultured
15.
Biochem J ; 317 ( Pt 2): 347-51, 1996 Jul 15.
Article in English | MEDLINE | ID: mdl-8713057

ABSTRACT

Thrombin and insulin receptor signaling via phosphoinositide (PI)-specific phospholipase C (PLC) and PI 3-kinase was studied in [3H]inositol-labelled 1321N1 cells. Thrombin stimulated a dramatic, transient activation of PLC which is probably mediated via receptors of the 'tethered-ligand' type, since it was both reproduced by, and abolished following, pretreatment of cells with a synthetic peptide (SFLLRN) corresponding to the ligand domain of the human thrombin receptor. However, neither thrombin nor SFLLRN stimulated PI 3-kinase. By contrast, insulin did not influence [3H]InsP3 concentration but stimulated accumulation of [3H]PtdIns(3,4,5)P3 and [3H]PtdIns(3,4)P2, the relative steady-state concentrations of which may indicate degradation of [3H]PtdIns(3,4,5)P3 by 5- and 3-phosphatases. The independent coupling of thrombin and insulin receptors to PLC and PI 3-kinase respectively in 1321N1 cells allowed interactions between these systems to be examined. Thus insulin-stimulated [3H]PtdIns(3,4,5)P3 accumulation was attenuated on co-stimulation of the thrombin receptor, whereas concentrations of [3H]PtdIns(3,4)P2 were transiently enhanced but then reduced. These results indicate that thrombin receptors in 1321N1 cells do not activate PI 3-kinase, but can modulate signalling by this enzyme.


Subject(s)
Insulin/pharmacology , Phosphatidylinositol Phosphates/biosynthesis , Receptors, Thrombin/metabolism , Thrombin/pharmacology , Amino Acid Sequence , Astrocytoma , Enzyme Activation/drug effects , Humans , Molecular Sequence Data , Peptide Fragments/pharmacology , Phosphatidylinositol 3-Kinases , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Signal Transduction/drug effects , Tumor Cells, Cultured , Type C Phospholipases/metabolism
16.
J Neurochem ; 65(5): 2279-89, 1995 Nov.
Article in English | MEDLINE | ID: mdl-7595517

ABSTRACT

The coupling of muscarinic receptor-stimulated phosphatidylinositol 4,5-bisphosphate hydrolysis by phospholipase C to resynthesis of phosphatidylinositol (PtdIns) and the ability of Li+ to inhibit this after cellular inositol depletion were studied in 1321N1 astrocytoma cells cultured in medium +/- inositol (40 microM). In inositol-replete cells, 1 mM carbachol/10 mM LiCl evoked an initial (0-30 min) approximately > or = 20-fold activation of phospholipase C, whereas prolonged (> 60 min) stimulation turned over PtdIns equal to the cellular total mass, involving approximately 80% of the cellular PtdIns pool without reducing PtdIns concentrations significantly. PtdIns resynthesis was achieved by a similar, initial agonist activation of PtdIns synthase. The dose dependency for carbachol stimulation of PtdIns synthase and phospholipase C was similar (EC50 approximately 20 microM) as was the relative intrinsic activity of muscarinic receptor partial agonists. This demonstrates the tight coupling of phosphoinositide hydrolysis to resynthesis and suggests this is achieved by a direct mechanism. In inositol-replete or depleted cells basal concentrations of inositol and CMP-phosphatidate were respectively approximately 20 mM or < or = 100-500 microM and approximately 0.1 or approximately > or = 1-10 pmol/mg of protein. Comparison of the effects of agonist +/- Li+ on the concentrations of these cosubstrates for PtdIns synthase suggest that accelerated activity of this enzyme is differentially driven by stimulated increases in the amounts of CMP-phosphatidate or inositol in inositol-replete or depleted cells, respectively. Thus, the preferential capacity of Li+ to impair stimulated phosphoinositide turnover in systems expressing low cellular inositol can be attributed to its ability to attenuate the stimulated rise in inositol concentrations on which such systems selectively depend to trigger accelerated PtdIns resynthesis.


Subject(s)
Astrocytoma/metabolism , Lithium/pharmacology , Phosphatidylinositols/antagonists & inhibitors , Phosphatidylinositols/biosynthesis , Receptors, Muscarinic/physiology , Transferases (Other Substituted Phosphate Groups)/metabolism , Astrocytoma/pathology , CDP-Diacylglycerol-Inositol 3-Phosphatidyltransferase , Enzyme Activation , Inositol/metabolism , Osmolar Concentration , Tumor Cells, Cultured , Type C Phospholipases/metabolism
17.
Biochem J ; 297 ( Pt 3): 529-37, 1994 Feb 01.
Article in English | MEDLINE | ID: mdl-8110190

ABSTRACT

Conditions are described for culture of 1321N1 cells under which cellular inositol is decreased from approximately 20 mM to < 0.5 mM but phosphoinositide concentrations are unaffected. The effects of the muscarinic-receptor agonist carbachol (1 mM) and/or LiCl (10 mM) on phosphoinositide turnover in these or in inositol-replete cells was examined after steady-state [3H]inositol labelling of phospholipid pools. In both inositol-replete and -depleted cells, carbachol stimulated similar initial (0-15 min) rates of phospholipase C (PLC) activity, in the presence of Li+. Subsequently (> 30-60 min) stimulated PLC activity and [3H]PtdIns concentrations declined dramatically only in depleted cells. In inositol-depleted cells, carbachol alone evoked increased concentrations of [3H]inositol, [3H]InsP1, [3H]InsP2, [3H]InsP3 and [3H]InsP4, which were largely sustained over 90 min, and concentrations of [3H]PtdIns, [3H]PtdInsP and [3H]PtdInsP2 were decreased only to approximately 82, 84 and 93% of control respectively. In the presence of Li+ in these cells, the stimulated rise in [3H]inositol was prevented and, although accumulation of [3H]InsP1, [3H]InsP2 and [3H]InsP3 was initially (0-30 min) potentiated, rates of accumulation of [3H]InsP1 and concentrations of [3H]polyphosphates later (> 30-60 min) declined, and concentrations of [3H]PtdIns, [3H]PtdInsP and [3H]PtdInsP2 were decreased respectively to approximately 39, 48 and 81% of control. After 60 min in the presence of both carbachol and Li+, stimulated PLC activity was decreased by approximately 70% compared with the initial rate in depleted cells. This decreased PLC activity was reflected by changes in the stimulated concentrations of [3H]Ins(1,3,4)P3 but not of [3H]Ins(1,4,5)P3, but effects of Li+ on the latter may have been obscured by the demonstrated, concomitant and equal stimulated accumulation of [3H]inositol 1:2cyclic,4,5-trisphosphate. These data suggest that receptor-mediated PLC activity is selectively impaired by Li+ as a secondary consequence of inositol monophosphatase inhibition in cells which are highly dependent on inositol re-cycling, but imply that, although Li+ attenuation of PLC activity correlates closely with parameters indicative of limiting inositol supply, it is not readily attributed to decreased PtdInsP2 availability. The potential for complex regulation of PLC and PtdIns synthase is discussed.


Subject(s)
Inositol/metabolism , Lithium/pharmacology , Phosphatidylinositols/biosynthesis , Receptors, Muscarinic/metabolism , Type C Phospholipases/metabolism , Culture Media , Humans , Phosphatidylinositols/antagonists & inhibitors , Tumor Cells, Cultured
18.
Curr Biol ; 3(11): 794-6, 1993 Nov 01.
Article in English | MEDLINE | ID: mdl-15335851
19.
Biochem J ; 294 ( Pt 1): 49-55, 1993 Aug 15.
Article in English | MEDLINE | ID: mdl-8395818

ABSTRACT

The uptake of inositol into 1321N1 astrocytoma cells was studied by measurement of the accumulation of free [3H]inositol within the intracellular pool. Uptake occurs via a saturable transporter with apparent Km for inositol approximately 40 microM and Vmax approximately 180 pmol/min per mg of protein, which permits intracellular inositol concentrations to exceed those of the medium by a factor of approximately 500. At extracellular concentrations up to 500 microM, inositol uptake is highly dependent (> or = 85%) on the presence of Na+ in the medium, and at physiological extracellular inositol concentrations, allows inositol to achieve an intracellular concentration of approximately 20 mM, indicating an active process driven by the Na+ gradient. Despite this, uptake was only minimally impaired or was unaffected by ouabain (1 mM) or dinitrophenol (1 mM). Consistent with a carrier-mediated mechanism, uptake was competitively blocked by phlorhizin (K1 approximately 125 microM). Uptake was also inhibited by carbachol and histamine, which act respectively via muscarinic and H1 receptors in these cells to stimulate phospholipase C. Inhibition by carbachol was dose-dependent (EC50 approximately 3-30 microM) and blocked by atropine. Inhibition by carbachol (1 mM) was non-competitive, resulting from approximately 50% decrease in the Vmax for uptake without affecting the Km and was persistent over 30-90 min. Inhibition by carbachol and histamine was independent of extracellular Ca2+ and was reproduced by phorbol ester, but not by Ca2+ ionophore or stimulation of adenylate cyclase. These results imply that receptors which couple to phospholipase C may mediate inhibition of inositol uptake via protein kinase C. The data are discussed in relation to inositol homoeostasis in resting and stimulated cells.


Subject(s)
Inositol/metabolism , Astrocytoma , Carrier Proteins/metabolism , Kinetics , Receptors, Cell Surface/metabolism , Receptors, Muscarinic/metabolism , Sodium/metabolism , Tumor Cells, Cultured , Type C Phospholipases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...