Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 65(22): 225004, 2020 12 07.
Article in English | MEDLINE | ID: mdl-33284786

ABSTRACT

Electronic portal imaging devices (EPIDs) lend themselves to beams-eye view clinical applications, such as tumor tracking, but are limited by low contrast and detective quantum efficiency (DQE). We characterize a novel EPID prototype consisting of multiple layers and investigate its suitability for use under clinical conditions. A prototype multi-layer imager (MLI) was constructed utilizing four conventional EPID layers, each consisting of a copper plate, a Gd2O2S:Tb phosphor scintillator, and an amorphous silicon flat panel array detector. We measured the detector's response to a 6 MV photon beam with regards to modulation transfer function, noise power spectrum, DQE, contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and the linearity of the detector's response to dose. Additionally, we compared MLI performance to the single top layer of the MLI and the standard Varian AS-1200 detector. Pre-clinical imaging was done on an anthropomorphic phantom, and the detector's CNR, SNR and spatial resolution were assessed in a clinical environment. Images obtained from spine and liver patient treatment deliveries were analyzed to verify CNR and SNR improvements. The MLI has a DQE(0) of 9.7%, about 5.7 times the reference AS-1200 detector. Improved noise performance largely drives the increase. CNR and SNR of clinical images improved three-fold compared to reference. A novel MLI was characterized and prepared for clinical translation. The MLI substantially improved DQE and CNR performance while maintaining the same resolution. Pre-clinical tests on an anthropomorphic phantom demonstrated improved performance as predicted theoretically. Preliminary patient data were analyzed, confirming improved CNR and SNR. Clinical applications are anticipated to include more accurate soft tissue tracking.


Subject(s)
Diagnostic Imaging/instrumentation , Electrical Equipment and Supplies , Humans , Phantoms, Imaging , Signal-To-Noise Ratio , Translational Research, Biomedical
2.
Phys Med Biol ; 65(12): 125011, 2020 06 22.
Article in English | MEDLINE | ID: mdl-32330918

ABSTRACT

Tumor tracking during radiotherapy treatment can improve dose accuracy, conformity and sparing of healthy tissue. Many methods have been introduced to tackle this challenge utilizing multiple imaging modalities, including a template matching based approach using the megavoltage (MV) on-board portal imager demonstrated on 3D conformal treatments. However, the complexity of treatments is evolving with the introduction of VMAT and IMRT, and successful motion management is becoming more important due to a trend towards hypofractionation. We have developed a markerless lung tumor tracking algorithm, utilizing the electronic portal imager (EPID) of the treatment machine. The algorithm has been specifically adapted to track during complex treatment deliveries with gantry and MLC motion. The core of the algorithm is an adaptive template matching method that relies on template stability metrics and local relative orientations to perform multiple feature tracking simultaneously. Only a single image is required to initialize the algorithm and features are automatically added, modified or removed in response to the input images. This algorithm was evaluated against images collected during VMAT arcs of a dynamic thorax phantom. Dynamic phantom images were collected during radiation delivery for multiple lung SBRT breathing traces and an example patient data set. The tracking error was 1.34 mm for the phantom data and 0.68 mm for the patient data. A multi-region, markerless tracking algorithm has been developed, capable of tracking multiple features simultaneously without requiring any other a priori information. This novel approach delivers robust target localization during complex treatment delivery. The reported tracking error is similar to previous reports for 3D conformal treatments.


Subject(s)
Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Radiotherapy, Image-Guided/methods , Radiotherapy, Intensity-Modulated/methods , Algorithms , Automation , Humans , Image Processing, Computer-Assisted , Movement , Phantoms, Imaging
3.
Phys Rev Lett ; 110(1): 012502, 2013 Jan 04.
Article in English | MEDLINE | ID: mdl-23383783

ABSTRACT

An experiment with a newly developed high-resolution kaon spectrometer and a scattered electron spectrometer with a novel configuration was performed in Hall C at Jefferson Lab. The ground state of a neutron-rich hypernucleus, (Λ)(7)He, was observed for the first time with the (e, e'K+) reaction with an energy resolution of ~0.6 MeV. This resolution is the best reported to date for hypernuclear reaction spectroscopy. The (Λ)(7)He binding energy supplies the last missing information of the A = 7, T = 1 hypernuclear isotriplet, providing a new input for the charge symmetry breaking effect of the ΛN potential.

4.
Phys Rev Lett ; 108(10): 102001, 2012 Mar 09.
Article in English | MEDLINE | ID: mdl-22468841

ABSTRACT

The parity-violating cross-section asymmetry in the elastic scattering of polarized electrons from unpolarized protons has been measured at a four-momentum transfer squared Q2 = 0.624 GeV2 and beam energy E(b) = 3.48 GeV to be A(PV) = -23.80 ± 0.78(stat) ± 0.36(syst) parts per million. This result is consistent with zero contribution of strange quarks to the combination of electric and magnetic form factors G(E)(s) + 0.517G(M)(s) = 0.003 ± 0.010(stat) ± 0.004(syst) ± 0.009(ff), where the third error is due to the limits of precision on the electromagnetic form factors and radiative corrections. With this measurement, the world data on strange contributions to nucleon form factors are seen to be consistent with zero and not more than a few percent of the proton form factors.

5.
Phys Rev Lett ; 103(20): 202501, 2009 Nov 13.
Article in English | MEDLINE | ID: mdl-20365979

ABSTRACT

An experimental study of the (16)O(e,e'K(+))(Lambda)(16)N reaction has been performed at Jefferson Lab. A thin film of falling water was used as a target. This permitted a simultaneous measurement of the p(e,e'K(+))Lambda, Sigma(0) exclusive reactions and a precise calibration of the energy scale. A ground-state binding energy of 13.76+/-0.16 MeV was obtained for (Lambda)(16)N with better precision than previous measurements on the mirror hypernucleus (Lambda)(16)O. Precise energies have been determined for peaks arising from a Lambda in s and p orbits coupled to the p(1/2) and p(3/2) hole states of the (15)N core nucleus.

6.
Phys Rev Lett ; 99(5): 052501, 2007 Aug 03.
Article in English | MEDLINE | ID: mdl-17930747

ABSTRACT

An experiment measuring electroproduction of hypernuclei has been performed in hall A at Jefferson Lab on a 12C target. In order to increase counting rates and provide unambiguous kaon identification two superconducting septum magnets and a ring imaging Cherenkov detector were added to the hall A standard equipment. An unprecedented energy resolution of less than 700 keV FWHM has been achieved. Thus, the observed (Lambda)(12)B spectrum shows for the first time identifiable strength in the core-excited region between the ground-state s-wave Lambda peak and the 11 MeV p-wave Lambda peak.

SELECTION OF CITATIONS
SEARCH DETAIL
...