Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 11(2)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36830905

ABSTRACT

It is crucial to consider the importance of the microbiome and the gut-lung axis in the context of SARS-CoV-2 infection. This pilot study examined the fecal microbial composition of patients with COVID-19 following a 3-month recovery. Using for the first time metagenomic analysis based on all hypervariable regions (V1-V9) of the 16S rRNA gene, we have identified 561 microbial species; however, 17 were specific only for the COVID-19 group (n = 8). The patients' cohorts revealed significantly greater alpha diversity of the gut microbiota compared to healthy controls (n = 14). This finding has been demonstrated by operational taxonomic units (OTUs) richness (p < 0.001) and Chao1 index (p < 0.01). The abundance of the phylum Verrucomicrobia was 30 times higher in COVID-19 patients compared to healthy subjects. Accordingly, this disproportion was also noted at other taxonomic levels: in the class Verrucomicrobiae, the family Verrucomicrobiaceae, and the genus Akkermansia. Elevated pathobionts such as Escherichia coli, Bilophila wadsworthia, and Parabacteroides distasonis were found in COVID-19 patients. Considering the gut microbiota's ability to disturb the immune response, our findings suggest the importance of the enteric microbiota in the course of SARS-CoV-2 infection. This pilot study shows that the composition of the microbial community may not be fully restored in individuals with SARS-CoV-2 following a 3-month recovery.

2.
Sci Rep ; 11(1): 2166, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33495479

ABSTRACT

Ulcerative colitis (UC) is a chronic immune-mediated disorder, whose etiology is not fully understood and for which no effective treatment is available. Recently, research has focused on the dysbiosis of gut microbiome in UC. However, the results so far remain inconsistent and insufficient to understand the microbial component in UC pathogenesis. In this study, we determine specific changes in the gut microbial profile in Polish UC patients compared to healthy subjects for the first time. Using 16S rRNA gene-based analysis we have described the intestinal microbial community in a group of 20 individuals (10 UC patients and 10 controls). Our results after multiple hypothesis testing correction demonstrated substantially lower gut microbiome diversity in UC cases compared to the controls and considerable differences at the phylum level, as well as among 13 bacterial families and 20 bacterial genera (p < 0.05). UC samples were more abundant in Proteobacteria (8.42%), Actinobacteria (6.89%) and Candidate Division TM7 (2.88%) than those of healthy volunteers (2.57%, 2.29% and 0.012%, respectively). On the other hand, Bacteroidetes and Verrucomicrobia were presented at a lower level in UC relative to the controls (14% and 0% vs 27.97% and 4.47%, respectively). In conclusion, our results show a reduced gut microbial diversity in Polish UC patients, a reduction of taxa with an anti-inflammatory impact and an increased abundance of potentially pathogenic bacteria.


Subject(s)
Colitis, Ulcerative/microbiology , Dysbiosis/microbiology , Gastrointestinal Microbiome , Biodiversity , Case-Control Studies , Entropy , Female , Humans , Male , Middle Aged , Phylogeny , Pilot Projects , Poland
3.
Biomedicines ; 8(8)2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32756350

ABSTRACT

The modification of the microbiome through fecal microbiota transplantation (FMT) is becoming a very promising therapeutic option for inflammatory bowel disease (IBD) patients. Our pilot study aimed to assess the effectiveness of multi-session FMT treatment in active ulcerative colitis (UC) patients. Ten patients with UC were treated with multi-session FMT (200 mL) from healthy donors, via colonoscopy/gastroscopy. Patients were evaluated as follows: at baseline, at week 7, and after 6 months, routine blood tests (including C reactive protein (CRP) and calprotectin) were performed. 16S rRNA gene (V3V4) sequencing was used for metagenomic analysis. The severity of UC was classified based on the Truelove-Witts index. The assessment of microbial diversity showed significant differences between recipients and healthy donors. FMT contributed to long-term, significant clinical and biochemical improvement. Metagenomic analysis revealed an increase in the amount of Lactobacillaceaea, Micrococcaceae, Prevotellaceae, and TM7 phylumsp.oral clone EW055 during FMT, whereas Staphylococcaceae and Bacillaceae declined significantly. A positive increase in the proportion of the genera Bifidobacterium, Lactobacillus, Rothia, Streptococcus, and Veillonella and a decrease in Bacillus, Bacteroides, and Staphylococcus were observed based on the correlation between calprotectin and Bacillus and Staphylococcus; ferritin and Lactobacillus, Veillonella, and Bifidobacterium abundance was indicated. A positive change in the abundance of Firmicutes was observed during FMT and after 6 months. The application of multi-session FMT led to the restoration of recipients' microbiota and resulted in the remission of patients with active UC.

4.
Eur Cytokine Netw ; 29(3): 83-94, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30547890

ABSTRACT

The prevalence of obesity has recently increased dramatically and has contributed to the increasing prevalence of various pathological conditions, including type 2 diabetes mellitus, nonalcoholic fatty liver disease, asthma, various types of cancer, cardiovascular and neurodegenerative diseases, and others. Accumulating evidence points to localized inflammation in adipose tissue, which, in turn, promotes systemic low-grade inflammation as a primary force contributing to the development of these pathologies. A better understanding of the underlying mechanisms behind obesity-induced adipose tissue inflammation is required to develop effective therapeutic or prophylactic strategies. This review is aimed to present the current knowledge of adipose tissue inflammation associated with obesity.


Subject(s)
Adipose Tissue/immunology , Obesity/immunology , Adipose Tissue/pathology , Animals , Asthma/immunology , Asthma/pathology , Cardiovascular Diseases/immunology , Cardiovascular Diseases/pathology , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/pathology , Humans , Inflammation/etiology , Inflammation/immunology , Inflammation/pathology , Neoplasms/immunology , Neoplasms/pathology , Neurodegenerative Diseases/immunology , Neurodegenerative Diseases/pathology , Non-alcoholic Fatty Liver Disease/immunology , Non-alcoholic Fatty Liver Disease/pathology , Obesity/etiology , Obesity/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...