Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37631638

ABSTRACT

The rental of houses is a common economic activity. However, there are many inconveniences that arise when renting a property. The lack of trust between the landlord and the tenant due to fraud or squatters makes it necessary to involve third parties to minimize risk. A blockchain (such as Ethereum) provides an ideal solution to act as a low-cost intermediary. This paper proposes the use of non-fungible tokens (NFTs) based on ERC-4519 for smart home tokenization. The ERC-4519 is an Ethereum standard for describing NFTs tied to physical assets, allowing smart homes (assets) to be linked to NFTs so that the smart homes can interact with the blockchain and perform transactions, know their landlord (owner) and assigned tenant (user), whether they are authenticated or not, and know their operating mode (NFT state). The payments associated with the rental process are made using the NFT, eliminating the need for additional fungible tokens and simplifying the process. The entire rental process is described and illustrated with a proof of concept using a Pycom Wipy 3.0 as a smart home gateway and a smart contract programmed in Solidity, which is deployed on the Goerli Testnet for Ethereum. Experimental results show that the smart home gateway takes a few tens of milliseconds to complete a transaction, and the transaction costs of the relevant functions of the smart contract are quite affordable.

2.
Sensors (Basel) ; 21(9)2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33946227

ABSTRACT

Non-fungible tokens (NFTs) are widely used in blockchain to represent unique and non-interchangeable assets. Current NFTs allow representing assets by a unique identifier, as a possession of an owner. The novelty introduced in this paper is the proposal of smart NFTs to represent IoT devices, which are physical smart assets. Hence, they are also identified as the utility of a user, they have a blockchain account (BCA) address to participate actively in the blockchain transactions, they can establish secure communication channels with owners and users, and they operate dynamically with several modes associated with their token states. A smart NFT is physically bound to its IoT device thanks to the use of a physical unclonable function (PUF) that allows recovering its private key and, then, its BCA address. The link between tokens and devices is difficult to break and can be traced during their lifetime, because devices execute a secure boot and carry out mutual authentication processes with new owners and users that could add new software. Hence, devices prove their trusted hardware and software. A whole demonstration of the proposal developed with ESP32-based IoT devices and Ethereum blockchain is presented, using the SRAM of the ESP32 microcontroller as the PUF.

3.
Sensors (Basel) ; 18(10)2018 Oct 08.
Article in English | MEDLINE | ID: mdl-30297609

ABSTRACT

Nowadays, there is an increasing number of cameras placed on mobile devices connected to the Internet. Since these cameras acquire and process sensitive and vulnerable data in applications such as surveillance or monitoring, security is essential to avoid cyberattacks. However, cameras on mobile devices have constraints in size, computation and power consumption, so that lightweight security techniques should be considered. Camera identification techniques guarantee the origin of the data. Among the camera identification techniques, Physically Unclonable Functions (PUFs) allow generating unique, distinctive and unpredictable identifiers from the hardware of a device. PUFs are also very suitable to obfuscate secret keys (by binding them to the hardware of the device) and generate random sequences (employed as nonces). In this work, we propose a trusted camera based on PUFs and standard cryptographic algorithms. In addition, a protocol is proposed to protect the communication with the trusted camera, which satisfies authentication, confidentiality, integrity and freshness in the data communication. This is particularly interesting to carry out camera control actions and firmware updates. PUFs from Static Random Access Memories (SRAMs) are selected because cameras typically include SRAMs in its hardware. Therefore, additional hardware is not required and security techniques can be implemented at low cost. Experimental results are shown to prove how the proposed solution can be implemented with the SRAM of commercial Bluetooth Low Energy (BLE) chips included in the communication module of the camera. A proof of concept shows that the proposed solution can be implemented in low-cost cameras.

4.
Sensors (Basel) ; 18(8)2018 Jul 26.
Article in English | MEDLINE | ID: mdl-30049967

ABSTRACT

Security is essential in sensor nodes which acquire and transmit sensitive data. However, the constraints of processing, memory and power consumption are very high in these nodes. Cryptographic algorithms based on symmetric key are very suitable for them. The drawback is that secure storage of secret keys is required. In this work, a low-cost solution is presented to obfuscate secret keys with Physically Unclonable Functions (PUFs), which exploit the hardware identity of the node. In addition, a lightweight fingerprint recognition solution is proposed, which can be implemented in low-cost sensor nodes. Since biometric data of individuals are sensitive, they are also obfuscated with PUFs. Both solutions allow authenticating the origin of the sensed data with a proposed dual-factor authentication protocol. One factor is the unique physical identity of the trusted sensor node that measures them. The other factor is the physical presence of the legitimate individual in charge of authorizing their transmission. Experimental results are included to prove how the proposed PUF-based solution can be implemented with the SRAMs of commercial Bluetooth Low Energy (BLE) chips which belong to the communication module of the sensor node. Implementation results show how the proposed fingerprint recognition based on the novel texture-based feature named QFingerMap16 (QFM) can be implemented fully inside a low-cost sensor node. Robustness, security and privacy issues at the proposed sensor nodes are discussed and analyzed with experimental results from PUFs and fingerprints taken from public and standard databases.

5.
Sensors (Basel) ; 18(2)2018 Jan 25.
Article in English | MEDLINE | ID: mdl-29370141

ABSTRACT

This work presents a Very Large Scale Integration (VLSI) design of trusted virtual sensors providing a minimum unitary cost and very good figures of size, speed and power consumption. The sensed variable is estimated by a virtual sensor based on a configurable and programmable PieceWise-Affine hyper-Rectangular (PWAR) model. An algorithm is presented to find the best values of the programmable parameters given a set of (empirical or simulated) input-output data. The VLSI design of the trusted virtual sensor uses the fast authenticated encryption algorithm, AEGIS, to ensure the integrity of the provided virtual measurement and to encrypt it, and a Physical Unclonable Function (PUF) based on a Static Random Access Memory (SRAM) to ensure the integrity of the sensor itself. Implementation results of a prototype designed in a 90-nm Complementary Metal Oxide Semiconductor (CMOS) technology show that the active silicon area of the trusted virtual sensor is 0.86 mm 2 and its power consumption when trusted sensing at 50 MHz is 7.12 mW. The maximum operation frequency is 85 MHz, which allows response times lower than 0.25 µ s. As application example, the designed prototype was programmed to estimate the yaw rate in a vehicle, obtaining root mean square errors lower than 1.1%. Experimental results of the employed PUF show the robustness of the trusted sensing against aging and variations of the operation conditions, namely, temperature and power supply voltage (final value as well as ramp-up time).

SELECTION OF CITATIONS
SEARCH DETAIL
...