Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Genet Mol Biol ; 46(3 Suppl 1): e20230139, 2024.
Article in English | MEDLINE | ID: mdl-38197733

ABSTRACT

Alcohol Use Disorder (AUD) is a highly prevalent condition worldwide that produces a wide range of pathophysiological consequences, with a critical impact on health and social issues. Alcohol influences gene expression through epigenetic changes mainly through DNA methylation. In this sense, levels of 5-methylcytosine (5-mC), namely Global DNA methylation (GMe), which can be influenced by environmental and hormonal effects, represent a putative biological mechanism underlying alcohol effects. Our aim was to investigate the influence of AUD diagnosis and alcohol patterns (i.e., years of addiction, use in the last 30 days, and alcohol severity) on GMe levels. The sample consisted of 256 men diagnosed with AUD and 361 men without AUD. DNA samples from peripheral blood were used to assess GMe levels, measured through the levels of 5-mC using high-performance liquid chromatography. Results from multiple linear regression analysis indicated that the presence of AUD was associated with lower GMe levels (beta=-0.155, p=0.011). Other alcohol-related outcomes were not associated with DNA methylation. Our findings are consistent with the hypothesis that the impact of chronic and heavy alcohol use in GMe could be a potential mechanism mediating the multiple organ damages related to AUD.

2.
Psychiatriki ; 34(2): 165-166, 2023 Jul 19.
Article in Greek, English | MEDLINE | ID: mdl-37212807

ABSTRACT

We were pleased to read Pehlivanidis and Papanikolaou's article1 and see that more colleagues are recognizing Theophrastus' text as the first description of Attention Deficit Hyperactivity Disorder (ADHD).2 We agree with the authors' perspective that Theophrastus' description may suggest the presence of more than one neurodevelopmental disorder. In fact, Theophrastus' description aligns with the shared clinical symptoms and underlying neurodevelopmental mechanisms of ADHD and Social Pragmatic Communication Disorder (SPCD). It is fascinating that a description from over 2000 years ago already presented prototypical individual transdiagnostic aspects that are compatible with a modern biological view of psychiatry. Indeed, it is not unexpected that heritable traits with clear biological underpinnings should have been perceived since the dawn of medicine. A significant leap forward in the development of this field came a few decades ago when Clements (1966)3 published a NIH-sponsored project entitled 'Minimal Brain Dysfunction in Children.' This seminal work prepared the terrain for the ongoing understanding of the grouping of signs, symptoms, and biological factors observed across various neurodevelopmental disorders. This grouping can be present in different spectrums, proportions, and nuances, including children and adults with some impairments that are not solely explained by their cognitive abilities. Thus, the characterization of 'The Obtuse Man' by Theophrastus could be considered a prototypical case of this more integrated and less fragmented view of what we call neurodevelopmental disorders.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Neurodevelopmental Disorders , Male , Child , Adult , Humans , Attention Deficit Disorder with Hyperactivity/psychology , Longitudinal Studies , Neurodevelopmental Disorders/diagnosis , Cognition
4.
Biol Psychiatry ; 92(4): 299-313, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35489875

ABSTRACT

BACKGROUND: Morphology of the human cerebral cortex differs across psychiatric disorders, with neurobiology and developmental origins mostly undetermined. Deviations in the tangential growth of the cerebral cortex during pre/perinatal periods may be reflected in individual variations in cortical surface area later in life. METHODS: Interregional profiles of group differences in surface area between cases and controls were generated using T1-weighted magnetic resonance imaging from 27,359 individuals including those with attention-deficit/hyperactivity disorder, autism spectrum disorder, bipolar disorder, major depressive disorder, schizophrenia, and high general psychopathology (through the Child Behavior Checklist). Similarity of interregional profiles of group differences in surface area and prenatal cell-specific gene expression was assessed. RESULTS: Across the 11 cortical regions, group differences in cortical area for attention-deficit/hyperactivity disorder, schizophrenia, and Child Behavior Checklist were dominant in multimodal association cortices. The same interregional profiles were also associated with interregional profiles of (prenatal) gene expression specific to proliferative cells, namely radial glia and intermediate progenitor cells (greater expression, larger difference), as well as differentiated cells, namely excitatory neurons and endothelial and mural cells (greater expression, smaller difference). Finally, these cell types were implicated in known pre/perinatal risk factors for psychosis. Genes coexpressed with radial glia were enriched with genes implicated in congenital abnormalities, birth weight, hypoxia, and starvation. Genes coexpressed with endothelial and mural genes were enriched with genes associated with maternal hypertension and preterm birth. CONCLUSIONS: Our findings support a neurodevelopmental model of vulnerability to mental illness whereby prenatal risk factors acting through cell-specific processes lead to deviations from typical brain development during pregnancy.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Bipolar Disorder , Depressive Disorder, Major , Premature Birth , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/pathology , Cerebral Cortex , Child , Depressive Disorder, Major/pathology , Female , Humans , Infant, Newborn , Magnetic Resonance Imaging/methods , Pregnancy , Premature Birth/pathology
5.
Mol Psychiatry ; 27(5): 2485-2491, 2022 05.
Article in English | MEDLINE | ID: mdl-35256746

ABSTRACT

Genetic and environmental factors contribute to the etiology of Attention Deficit-Hyperactivity Disorder (ADHD). In this sense, the study of epigenetic mechanisms could contribute to the understanding of the disorder's neurobiology. Global DNA methylation (GMe) evaluated through 5-methylcytosine levels could be a promising epigenetic biomarker to capture long-lasting biological effects in response to environmental and hormonal changes. We conducted the first assessment of GMe levels in subjects with ADHD (n = 394) and its main comorbidities in comparison to populational controls (n = 390). Furthermore, given the high genetic contribution to ADHD (heritability of 80%), polygenic risk scores (PRS) were calculated to verify the genetic contribution to GMe levels in ADHD and the comorbidities associated with GMe levels. The GMe levels observed in patients were lower than controls (P = 1.1e-8), with women being significantly less globally methylated than men (P = 0.002). Regarding comorbidities, the presence of bipolar disorder (BD) among patients with ADHD was associated with higher methylation levels compared to patients with ADHD without BD (P = 0.031). The results did not change when pharmacological treatment was accounted for in the analyses. The ADHD and BD most predictive PRSs were negatively (P = 0.0064) and positively (P = 0.0042) correlated with GMe, respectively. This study is the first to report an association between GMe, ADHD, and its comorbidity with BD and associations between PRSs for specific psychiatric disorders and GMe. Our findings add to previous evidence that GMe may be a relevant piece in the psychiatric disorders' etiological landscape.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Bipolar Disorder , Adult , Attention Deficit Disorder with Hyperactivity/complications , Attention Deficit Disorder with Hyperactivity/epidemiology , Attention Deficit Disorder with Hyperactivity/genetics , Bipolar Disorder/complications , Bipolar Disorder/epidemiology , Bipolar Disorder/genetics , Comorbidity , DNA Methylation/genetics , Female , Humans , Male , Multifactorial Inheritance/genetics
6.
Hum Brain Mapp ; 43(1): 37-55, 2022 01.
Article in English | MEDLINE | ID: mdl-32420680

ABSTRACT

Neuroimaging has been extensively used to study brain structure and function in individuals with attention deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) over the past decades. Two of the main shortcomings of the neuroimaging literature of these disorders are the small sample sizes employed and the heterogeneity of methods used. In 2013 and 2014, the ENIGMA-ADHD and ENIGMA-ASD working groups were respectively, founded with a common goal to address these limitations. Here, we provide a narrative review of the thus far completed and still ongoing projects of these working groups. Due to an implicitly hierarchical psychiatric diagnostic classification system, the fields of ADHD and ASD have developed largely in isolation, despite the considerable overlap in the occurrence of the disorders. The collaboration between the ENIGMA-ADHD and -ASD working groups seeks to bring the neuroimaging efforts of the two disorders closer together. The outcomes of case-control studies of subcortical and cortical structures showed that subcortical volumes are similarly affected in ASD and ADHD, albeit with small effect sizes. Cortical analyses identified unique differences in each disorder, but also considerable overlap between the two, specifically in cortical thickness. Ongoing work is examining alternative research questions, such as brain laterality, prediction of case-control status, and anatomical heterogeneity. In brief, great strides have been made toward fulfilling the aims of the ENIGMA collaborations, while new ideas and follow-up analyses continue that include more imaging modalities (diffusion MRI and resting-state functional MRI), collaborations with other large databases, and samples with dual diagnoses.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Brain , Neuroimaging , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Attention Deficit Disorder with Hyperactivity/pathology , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/pathology , Brain/diagnostic imaging , Brain/pathology , Humans , Multicenter Studies as Topic , Neurosciences
7.
J Neural Transm (Vienna) ; 128(12): 1907-1916, 2021 12.
Article in English | MEDLINE | ID: mdl-34609638

ABSTRACT

ADHD is associated with smaller subcortical brain volumes and cortical surface area, with greater effects observed in children than adults. It is also associated with dysregulation of the HPA axis. Considering the effects of the glucocorticoid receptor (NR3C1) in neurophysiology, we hypothesize that the blurred relationships between brain structures and ADHD in adults could be partly explained by NR3C1 gene variation. Structural T1-weighted images were acquired on a 3 T scanner (N = 166). Large-scale genotyping was performed, and it was followed by quality control and pruning procedures, which resulted in 48 independent NR3C1 gene variants analyzed. After a stringent Bonferroni correction, two SNPs (rs2398631 and rs72801070) moderated the association between ADHD and accumbens and amygdala volumes in adults. The significant SNPs that interacted with ADHD appear to have a role in gene expression regulation, and they are in linkage disequilibrium with NR3C1 variants that present well-characterized physiological functions. The literature-reported associations of ADHD with accumbens and amygdala were only observed for specific NR3C1 genotypes. Our findings reinforce the influence of the NR3C1 gene on subcortical volumes and ADHD. They suggest a genetic modulation of the effects of a pivotal HPA axis component in the neuroanatomical features of ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Receptors, Glucocorticoid , Adult , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Attention Deficit Disorder with Hyperactivity/genetics , Brain/diagnostic imaging , Brain/metabolism , Glucocorticoids , Humans , Hypothalamo-Hypophyseal System/metabolism , Magnetic Resonance Imaging , Pituitary-Adrenal System , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism
8.
J Child Psychol Psychiatry ; 62(10): 1202-1219, 2021 10.
Article in English | MEDLINE | ID: mdl-33748971

ABSTRACT

OBJECTIVE: Some studies have suggested alterations of structural brain asymmetry in attention-deficit/hyperactivity disorder (ADHD), but findings have been contradictory and based on small samples. Here, we performed the largest ever analysis of brain left-right asymmetry in ADHD, using 39 datasets of the ENIGMA consortium. METHODS: We analyzed asymmetry of subcortical and cerebral cortical structures in up to 1,933 people with ADHD and 1,829 unaffected controls. Asymmetry Indexes (AIs) were calculated per participant for each bilaterally paired measure, and linear mixed effects modeling was applied separately in children, adolescents, adults, and the total sample, to test exhaustively for potential associations of ADHD with structural brain asymmetries. RESULTS: There was no evidence for altered caudate nucleus asymmetry in ADHD, in contrast to prior literature. In children, there was less rightward asymmetry of the total hemispheric surface area compared to controls (t = 2.1, p = .04). Lower rightward asymmetry of medial orbitofrontal cortex surface area in ADHD (t = 2.7, p = .01) was similar to a recent finding for autism spectrum disorder. There were also some differences in cortical thickness asymmetry across age groups. In adults with ADHD, globus pallidus asymmetry was altered compared to those without ADHD. However, all effects were small (Cohen's d from -0.18 to 0.18) and would not survive study-wide correction for multiple testing. CONCLUSION: Prior studies of altered structural brain asymmetry in ADHD were likely underpowered to detect the small effects reported here. Altered structural asymmetry is unlikely to provide a useful biomarker for ADHD, but may provide neurobiological insights into the trait.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Adolescent , Adult , Brain/diagnostic imaging , Caudate Nucleus , Child , Humans , Magnetic Resonance Imaging
9.
J Clin Psychol ; 77(3): 516-524, 2021 03.
Article in English | MEDLINE | ID: mdl-32880953

ABSTRACT

OBJECTIVE: Our aim was to explore the feasibility, and efficacy of a Dialectical Behavior Therapy Skill Training Group (DBT-ST) as an add-on treatment for adult attention-deficit/hyperactivity disorder (ADHD) in Latin America. METHOD: Adults with ADHD (n = 31) with stable medication treatment for ADHD and residual symptoms (ASRS > 20) were randomly assigned to DBT-ST (n = 16) or treatment as usual (TaU; n = 15) for 12 weeks. Feasibility was accessed by attendance and completion rates at 12 weeks. Efficacy outcomes were measured with the ASRS, and performed at 0, 6, 12, and 16 weeks. RESULTS: The DBT-ST protocol had 81.25% completion rate, with a mean attendance of 87.25% of the sessions. No significant interactions between group and time were detected for outcome measures. DISCUSSION: The DBT-ST was feasible as add-on treatment for adult patients with ADHD in Latin America. Replicating previous findings, DBT-ST has shown no significantly higher improvement in ADHD symptoms in comparison with TaU. Registered at the Clinical Trials database (NCT03326427).


Subject(s)
Attention Deficit Disorder with Hyperactivity/therapy , Dialectical Behavior Therapy , Adult , Feasibility Studies , Female , Humans , Male , Treatment Outcome
10.
JAMA Psychiatry ; 78(1): 47-63, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32857118

ABSTRACT

IMPORTANCE: Large-scale neuroimaging studies have revealed group differences in cortical thickness across many psychiatric disorders. The underlying neurobiology behind these differences is not well understood. OBJECTIVE: To determine neurobiologic correlates of group differences in cortical thickness between cases and controls in 6 disorders: attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BD), major depressive disorder (MDD), obsessive-compulsive disorder (OCD), and schizophrenia. DESIGN, SETTING, AND PARTICIPANTS: Profiles of group differences in cortical thickness between cases and controls were generated using T1-weighted magnetic resonance images. Similarity between interregional profiles of cell-specific gene expression and those in the group differences in cortical thickness were investigated in each disorder. Next, principal component analysis was used to reveal a shared profile of group difference in thickness across the disorders. Analysis for gene coexpression, clustering, and enrichment for genes associated with these disorders were conducted. Data analysis was conducted between June and December 2019. The analysis included 145 cohorts across 6 psychiatric disorders drawn from the ENIGMA consortium. The numbers of cases and controls in each of the 6 disorders were as follows: ADHD: 1814 and 1602; ASD: 1748 and 1770; BD: 1547 and 3405; MDD: 2658 and 3572; OCD: 2266 and 2007; and schizophrenia: 2688 and 3244. MAIN OUTCOMES AND MEASURES: Interregional profiles of group difference in cortical thickness between cases and controls. RESULTS: A total of 12 721 cases and 15 600 controls, ranging from ages 2 to 89 years, were included in this study. Interregional profiles of group differences in cortical thickness for each of the 6 psychiatric disorders were associated with profiles of gene expression specific to pyramidal (CA1) cells, astrocytes (except for BD), and microglia (except for OCD); collectively, gene-expression profiles of the 3 cell types explain between 25% and 54% of variance in interregional profiles of group differences in cortical thickness. Principal component analysis revealed a shared profile of difference in cortical thickness across the 6 disorders (48% variance explained); interregional profile of this principal component 1 was associated with that of the pyramidal-cell gene expression (explaining 56% of interregional variation). Coexpression analyses of these genes revealed 2 clusters: (1) a prenatal cluster enriched with genes involved in neurodevelopmental (axon guidance) processes and (2) a postnatal cluster enriched with genes involved in synaptic activity and plasticity-related processes. These clusters were enriched with genes associated with all 6 psychiatric disorders. CONCLUSIONS AND RELEVANCE: In this study, shared neurobiologic processes were associated with differences in cortical thickness across multiple psychiatric disorders. These processes implicate a common role of prenatal development and postnatal functioning of the cerebral cortex in these disorders.


Subject(s)
Attention Deficit Disorder with Hyperactivity/pathology , Autism Spectrum Disorder/pathology , Bipolar Disorder/pathology , Cerebral Cortex/pathology , Depressive Disorder, Major/pathology , Fetal Development/physiology , Gene Expression/physiology , Human Development/physiology , Obsessive-Compulsive Disorder/pathology , Schizophrenia/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Autism Spectrum Disorder/diagnostic imaging , Bipolar Disorder/diagnostic imaging , Case-Control Studies , Cerebral Cortex/cytology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/growth & development , Child , Child, Preschool , Cohort Studies , Computational Biology , Depressive Disorder, Major/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Obsessive-Compulsive Disorder/diagnostic imaging , Principal Component Analysis , Schizophrenia/diagnostic imaging , Young Adult
11.
Mol Psychiatry ; 26(1): 66-69, 2021 01.
Article in English | MEDLINE | ID: mdl-33099577

ABSTRACT

There is an increasing body of knowledge on the influence of differential DNA methylation of specific genomic regions in psychiatric disorders. However, fewer studies have addressed global DNA methylation (GMe) levels. GMe is an estimative of biological functioning that is regulated by pervasive mechanisms able to capture the big picture of metabolic and environmental influences upon gene expression. In the present perspective article, we highlighted evidence for the relationships between cortisol and sex hormones and GMe in psychiatric disorders. We argue that the far-reaching effects of cortisol and sexual hormones on GMe may lie on the pathways linking stress and mental health. Further research on these endocrine-epigenetic links may help to explain the role of environmental stress as well as sex differences in the prevalence of psychiatric disorders.


Subject(s)
DNA Methylation , Gonadal Steroid Hormones/metabolism , Hydrocortisone/metabolism , Mental Disorders/genetics , Mental Disorders/metabolism , DNA Methylation/genetics , Epigenesis, Genetic , Humans , Sex Characteristics
12.
Neuromolecular Med ; 22(3): 384-390, 2020 09.
Article in English | MEDLINE | ID: mdl-32152934

ABSTRACT

Genome-wide studies provide increasing evidence of association of genetic variants with different behaviors. However, there is a growing need for replication and subsequent characterization of specific findings. In this sense, the CHRNA5 gene has been associated with nicotine (with genome-wide significance), alcohol and cocaine addictions. So far, this gene has not been evaluated in smoked (crack) cocaine. We aimed to analyze the influence of CHRNA5 variants in crack addiction susceptibility and severity. The sample includes 300 crack-addicted patients and 769 non-addicted individuals. The CHRNA5 SNPs evaluated were rs588765, rs16969968, and rs514743. Homozygosity for rs16969968 and rs588765 major alleles was nominally associated with a risk to crack addiction (GG, P = 0.032; CC, P = 0.036, respectively). Haplotype analyses reveal significant associations (rs588765|rs16969968|rs514743 pglobal-corrected = 7.66 × 10-5) and suggest a substantial role for rs16969968. These findings corroborate previous reports in cocaine addiction-in line with the expected effects of cocaine in the cholinergic system-and in the opposite direction of significant GWAS findings for nicotine addiction susceptibility. These results are strengthened by the first report of an association of rs588765 with crack addiction and by the haplotype findings. In summary, our study highlights the relevance of the α5 subunit on crack cocaine addiction, replicating previous results relating CHRNA5 with the genetics and pathophysiology of addiction of different drugs.


Subject(s)
Cocaine-Related Disorders/genetics , Crack Cocaine/adverse effects , Nerve Tissue Proteins/genetics , Polymorphism, Single Nucleotide , Receptors, Nicotinic/genetics , Adult , Alleles , Case-Control Studies , Cocaine-Related Disorders/epidemiology , Computer Simulation , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Haplotypes/genetics , Humans , Male , Risk , Structure-Activity Relationship , Young Adult
13.
Transl Psychiatry ; 9(1): 308, 2019 11 18.
Article in English | MEDLINE | ID: mdl-31740662

ABSTRACT

Transcriptomics and candidate gene/protein expression studies have indicated several biological processes modulated by methylphenidate (MPH), widely used in attention-deficit/hyperactivity disorder (ADHD) treatment. However, the lack of a differential proteomic profiling of MPH treatment limits the understanding of the most relevant mechanisms by which MPH exerts its pharmacological effects at the molecular level. Therefore, our aim is to investigate the MPH-induced proteomic alterations using an experimental design integrated with a pharmacogenomic analysis in a translational perspective. Proteomic analysis was performed using the cortices of Wistar-Kyoto rats, which were treated by gavage with MPH (2 mg/kg) or saline for two weeks (n = 6/group). After functional enrichment analysis of the differentially expressed proteins (DEP) in rats, the significant biological pathways were tested for association with MPH response in adults with ADHD (n = 189) using genome-wide data. Following MPH treatment in rats, 98 DEPs were found (P < 0.05 and FC < -1.0 or > 1.0). The functional enrichment analysis of the DEPs revealed 18 significant biological pathways (gene-sets) modulated by MPH, including some with recognized biological plausibility, such as those related to synaptic transmission. The pharmacogenomic analysis in the clinical sample evaluating these pathways revealed nominal associations for gene-sets related to neurotransmitter release and GABA transmission. Our results, which integrate proteomics and pharmacogenomics, revealed putative molecular effects of MPH on several biological processes, including oxidative stress, cellular respiration, and metabolism, and extended the results involving synaptic transmission pathways to a clinical sample. These findings shed light on the molecular signatures of MPH effects and possible biological sources of treatment response variability.


Subject(s)
Attention Deficit Disorder with Hyperactivity/drug therapy , Attention Deficit Disorder with Hyperactivity/genetics , Central Nervous System Stimulants/therapeutic use , Methylphenidate/therapeutic use , Adult , Animals , Female , Humans , Male , Pharmacogenetics , Proteomics , Random Allocation , Rats , Rats, Inbred WKY
14.
Article in English | MEDLINE | ID: mdl-31059723

ABSTRACT

Synaptotagmin-1 is an essential regulator of synaptic vesicle exocytosis, and its encoding gene (SYT1) is a genome and transcriptome-wide association hit in cognitive performance, personality and cocaine use disorder (CUD) studies. Additionally, in candidate gene studies the specific variant rs2251214 has been associated with attention-deficit/hyperactivity disorder (ADHD), antisocial personality disorder and other externalizing phenotypes in adults with ADHD, as well as with response to methylphenidate (MPH) treatment. In this context, we sought to evaluate, in an independent sample, the association of this variant with CUD, a phenotype that shares common biological underpinnings with the previously associated traits. We tested the association between SYT1-rs2251214 and CUD susceptibility and severity (addiction severity index) in a sample composed by 315 patients addicted to smoked cocaine and 769 non-addicted volunteers. SYT1-rs2251214 was significantly associated with susceptibility to CUD, where the G allele presented increased risk for the disorder in the genetic models tested (P = 0.0021, OR = 1.44, allelic; P = 0.0012, OR = 1.48, additive; P = 0.0127, OR = 1.41, dominant). This is the same allele that was associated with increased risk for ADHD and other externalizing behaviors, as well as poor response to MPH treatment in previous studies. These findings suggest that the neurotransmitter exocytosis pathway might play a critical role in the liability for psychiatric disorders, especially externalizing behaviors and CUD.


Subject(s)
Cocaine-Related Disorders/genetics , Genetic Predisposition to Disease/genetics , Synaptotagmin I/genetics , Adult , Case-Control Studies , Crack Cocaine , Female , Genetic Association Studies , Humans , Male , Polymorphism, Single Nucleotide/genetics , Young Adult
16.
Neurosci Biobehav Rev ; 100: 166-179, 2019 05.
Article in English | MEDLINE | ID: mdl-30826386

ABSTRACT

The spontaneously hypertensive rats (SHR) are the most widely used model for ADHD. While face and construct validity are consolidated, questions remain about the predictive validity of the SHR model. We aim at summarizing the evidence for the predictive validity of SHR by evaluating its ability to respond to methylphenidate (MPH), the most well documented treatment for ADHD. A systematic review was carried out to identify studies evaluating MPH effects on SHR behavior. Studies (n=36) were grouped into locomotion, attention, impulsivity or memory, and a meta-analysis was performed. Meta-regression, sensitivity, heterogeneity, and publication bias analyses were also conducted. MPH increased attentional and mnemonic performances in the SHR model and decreased impulsivity in a dose-dependent manner. However, MPH did not reduce hyperactivity in low and medium doses, while increased locomotor activity in high doses. Thus, since the paradoxical effect of stimulant in reducing hyperactivity was not observed in the SHR model, our study does not fully support the predictive validity of SHR, questioning their validity as an animal model for ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity/psychology , Behavior, Animal/drug effects , Central Nervous System Stimulants/administration & dosage , Disease Models, Animal , Methylphenidate/administration & dosage , Animals , Attention/drug effects , Dose-Response Relationship, Drug , Impulsive Behavior/drug effects , Memory/drug effects , Rats, Inbred SHR , Reproducibility of Results
17.
Neuromolecular Med ; 21(1): 60-67, 2019 03.
Article in English | MEDLINE | ID: mdl-30652248

ABSTRACT

Neurodevelopmental disorders are prevalent, frequently occur in comorbidity and share substantial genetic correlation. Previous evidence has suggested a role for the ADGRL3 gene in Attention-Deficit/Hyperactivity Disorder (ADHD) susceptibility in several samples. Considering ADGRL3 functionality in central nervous system development and its previous association with neurodevelopmental disorders, we aimed to assess ADGRL3 influence in early-onset ADHD (before 7 years of age) and Autism Spectrum Disorder (ASD). The sample comprises 187 men diagnosed with early-onset ADHD, 135 boys diagnosed with ASD and 468 male blood donors. We tested the association of an ADGRL3 variant (rs6551665) with both early-onset ADHD and ASD susceptibility. We observed significant associations between ADGRL3-rs6551665 on ADHD and ASD susceptibilities; we found that G-carriers were at increased risk of ADHD and ASD, in accordance with previous studies. The overall evidence from the literature, corroborated by our results, suggests that ADGRL3 might be involved in brain development, and genetic modifications related to it might be part of a shared vulnerability factor associated with the underlying neurobiology of neurodevelopmental disorders such as ADHD and ASD.


Subject(s)
Attention Deficit Disorder with Hyperactivity/genetics , Autism Spectrum Disorder/genetics , Nerve Tissue Proteins/genetics , Polymorphism, Single Nucleotide , Receptors, G-Protein-Coupled/genetics , Receptors, Peptide/genetics , Adolescent , Adult , Age Distribution , Age of Onset , Attention Deficit Disorder with Hyperactivity/epidemiology , Autism Spectrum Disorder/epidemiology , Brain/embryology , Brain/metabolism , Child , Computer Simulation , Gene Expression Regulation, Developmental , Genetic Predisposition to Disease , Humans , Male , Models, Genetic , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/physiology , Neurodevelopmental Disorders/epidemiology , Neurodevelopmental Disorders/genetics , Receptors, G-Protein-Coupled/biosynthesis , Receptors, G-Protein-Coupled/physiology , Receptors, Peptide/biosynthesis , Receptors, Peptide/physiology , Sex Distribution , Young Adult
18.
J Neural Transm (Vienna) ; 126(2): 193-199, 2019 02.
Article in English | MEDLINE | ID: mdl-30367264

ABSTRACT

There is evidence that dopamine receptors D2 (DRD2) and D4 (DRD4) polymorphisms may influence substance use disorders (SUD) susceptibility both individually and through their influence in the formation of DRD2-DRD4 heteromers. The dopaminergic role on the vulnerability to addiction appears to be influenced by sex. A cross-sectional study with 307 crack cocaine addicts and 770 controls was conducted. The influence of DRD2 rs2283265 and DRD4 48 bp VNTR in exon 3 variants, as well as their interaction on crack cocaine addiction susceptibility and severity were evaluated in women and men separately. An association between the DRD2 T allele and crack cocaine addiction was found in women. In this same group, interaction analysis demonstrated that the presence of DRD2-T allele and concomitant absence of DRD4-7R allele were associated with risk for crack cocaine addiction. No influence of DRD2 and DRD4 variants was observed in men regarding addiction severity. This study reinforces the role of dopaminergic genes in externalizing behaviors, especially the influence of DRD2-DRD4 interaction on SUD. This is the fourth sample that independently associated the DRD2-DRD4 interaction with SUD itself or related disorders. In addition, our findings point out to a potential difference of dopaminergic neurotransmission across sex influencing addiction susceptibility.


Subject(s)
Cocaine-Related Disorders/genetics , Crack Cocaine , Genetic Predisposition to Disease/genetics , Receptors, Dopamine D2/genetics , Receptors, Dopamine D4/genetics , Adult , Cross-Sectional Studies , Female , Humans , Male , Minisatellite Repeats , Polymorphism, Genetic , Sex Factors , Young Adult
20.
J Psychiatr Res ; 95: 269-275, 2017 12.
Article in English | MEDLINE | ID: mdl-28923721

ABSTRACT

Attention-deficit/hyperactivity disorder (ADHD) is a very common psychiatric disorder across the life cycle and frequently presents comorbidities. Since ADHD is highly heritable, several studies have focused in the underlying genetic factors involved in its etiology. One of the major challenges in this search is the phenotypic heterogeneity, which could be partly attributable to the sexual dimorphism frequently seen in psychiatric disorders. Taking into account the well-known sexual dimorphic effect observed in serotonergic system characteristics, we differentially tested the influence of HTR1B SNPs (rs11568817, rs130058, rs6296 and rs13212041) on ADHD susceptibility and on its major comorbidities according to sex. The sample comprised 564 adults with ADHD diagnosed according to DSM-IV criteria and 635 controls. There was no association of any HTR1B SNPs tested in relation to ADHD susceptibility. As for the comorbidities evaluated, after correction for multiple tests, significant associations were observed for both rs11568817 and rs130058 with substance use disorders (Pcorr = 0.009 and Pcorr = 0.018, respectively) and for rs11568817 with nicotine dependence (Pcorr = 0.025) in men with ADHD. In women with ADHD, the same rs11568817 was associated with generalized anxiety disorder (Pcorr = 0.031). The observed effects of rs11568817 G allele presence conferring risk to either substance use disorders or generalized anxiety disorder according to sex, suggest an overall scenario where a higher transcriptional activity of HTR1B, resulting from the presence of this allele, is related to externalizing behaviors in men and internalizing behaviors in women. These results are consistent with and expand previous evidence of sexual dimorphism of the serotoninergic system.


Subject(s)
Anxiety Disorders/genetics , Attention Deficit Disorder with Hyperactivity/genetics , Receptor, Serotonin, 5-HT1B/genetics , Sex Characteristics , Substance-Related Disorders/genetics , Adult , Anxiety Disorders/epidemiology , Attention Deficit Disorder with Hyperactivity/epidemiology , Comorbidity , Female , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Tobacco Use Disorder/epidemiology , Tobacco Use Disorder/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...