Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 168: 309-322, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37479158

ABSTRACT

The preservation of oral health over a person's lifespan is a key factor for a high quality of life. Sustaining oral health requires high-end dental materials with a plethora of attributes such as durability, non-toxicity and ease of application. The combination of different requirements leads to increasing miniaturization and complexity of the material components such as the composite and adhesives, which makes the precise characterization of the material blend challenging. Here, we demonstrate how modern IR spectroscopy and imaging from the micro- to the nanoscale can provide insights on the chemical composition of the different material sections of a dental filling. We show how the recorded IR-images can be used for a fast and non-destructive porosity determination of the studied adhesive. Furthermore, the nanoscale study allows precise assessment of glass cluster structures and distribution within their characteristic organically modified ceramic (ORMOCER) matrix and an assessment of the interface between the composite and adhesive material. For the study we used a Fourier-Transform-IR (FTIR) microscope and a quantum cascade laser-based IR-microscope (QCL-IR) for the microscale analysis and a scattering-type scanning near-field optical microscopy (s-SNOM) for the nanoscale analysis. The paper ends with an in-depth discussion of the strengths and weaknesses of the different imaging methods to give the reader a clear picture for which scientific question the microscopes are best suited for. STATEMENT OF SIGNIFICANCE: Modern resin-based composites for dental restoration are complex multi-compound materials. In order to improve these high-end materials, it is important to investigate the molecular composition and morphology of the different parts. An emergent method to characterize these materials is infrared spectroscopic imaging, which combines the strength of infrared spectroscopy and an imaging approach known from optical microscopy. In this work, three state of the art methods are compared for investigating a dental filling including FTIR- and quantum cascade laser IR-imaging microscopy for the microscale and scattering-type scanning near-field optical microscopy for the nanoscale.


Subject(s)
Microscopy , Quality of Life , Humans , Spectroscopy, Fourier Transform Infrared/methods , Microscopy/methods , Spectrophotometry, Infrared , Dental Materials , Materials Testing , Composite Resins/chemistry
2.
Sci Rep ; 11(1): 21860, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34750511

ABSTRACT

Infrared fingerprint spectra can reveal the chemical nature of materials down to 20-nm detail, far below the diffraction limit, when probed by scattering-type scanning near-field optical microscopy (s-SNOM). But this was impossible with living cells or aqueous processes as in corrosion, due to water-related absorption and tip contamination. Here, we demonstrate infrared s-SNOM of water-suspended objects by probing them through a 10-nm thick SiN membrane. This separator stretches freely over up to 250 µm, providing an upper, stable surface to the scanning tip, while its lower surface is in contact with the liquid and localises adhering objects. We present its proof-of-principle applicability in biology by observing simply drop-casted, living E. coli in nutrient medium, as well as living A549 cancer cells, as they divide, move and develop rich sub-cellular morphology and adhesion patterns, at 150 nm resolution. Their infrared spectra reveal the local abundances of water, proteins, and lipids within a depth of ca. 100 nm below the SiN membrane, as we verify by analysing well-defined, suspended polymer spheres and through model calculations. SiN-membrane based s-SNOM thus establishes a novel tool of live cell nano-imaging that returns structure, dynamics and chemical composition. This method should benefit the nanoscale analysis of any aqueous system, from physics to medicine.


Subject(s)
Microscopy/methods , Nanoparticles , Spectroscopy, Near-Infrared/methods , A549 Cells/chemistry , A549 Cells/pathology , Escherichia coli/chemistry , Escherichia coli/cytology , Humans , Intravital Microscopy/methods , Nanotechnology , Optical Phenomena , Silicon Compounds , Single-Cell Analysis , Spectroscopy, Fourier Transform Infrared , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...