Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Emerg Med J ; 28(4): 283-6, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20713370

ABSTRACT

OBJECTIVES: To determine contentment with the performance of primary mission emergency care providers. METHODS: A prospective cohort study was conducted using key informant interviews to assess quality of life and self-rated degree of contentment with care in geriatric emergencies. RESULTS: Interviews concerning a total of 152 geriatric emergency cases in nursing homes were conducted with patients in 13 (8.6%) cases, geriatric nurses in 132 (86.8%) cases and emergency physicians in 116 (76.3%) cases within a 3-month period. All responding patients as well as the majority of nurses (96.2%) and physicians (79.4%) were content with the quality of emergency care, but showed less contentment with communication (57.6% of nurses; 22.4% of physicians) and with cooperation on-site (57.6% of nurses; 20.7% of physicians). CONCLUSIONS: Participants perceived a deficit in communication and cooperation on-site. There is a need for intensified education in managing geriatric emergency patients, especially with regard to communication and psychosocial issues.


Subject(s)
Attitude of Health Personnel , Emergencies , Emergency Medical Services/standards , Nurses/psychology , Nursing Homes , Patients/psychology , Physicians/psychology , Aged , Aged, 80 and over , Analysis of Variance , Austria , Communication , Female , Geriatric Nursing , Glasgow Coma Scale , Humans , Interviews as Topic , Male , Middle Aged , Prospective Studies , Quality of Life , Statistics, Nonparametric , Surveys and Questionnaires
2.
Anaesthesist ; 59(12): 1105-23, 2010 Dec.
Article in German | MEDLINE | ID: mdl-21125214

ABSTRACT

ADULTS: Administer chest compressions (minimum 100/min, minimum 5 cm depth) at a ratio of 30:2 with ventilation (tidal volume 500-600 ml, inspiration time 1 s, F(I)O2 if possible 1.0). Avoid any interruptions in chest compressions. After every single defibrillation attempt (initially biphasic 120-200 J, monophasic 360 J, subsequently with the respective highest energy), chest compressions are initiated again immediately for 2 min independent of the ECG rhythm. Tracheal intubation is the optimal method for securing the airway during resuscitation but should be performed only by experienced airway management providers. Laryngoscopy is performed during ongoing chest compressions; interruption of chest compressions for a maximum of 10 s to pass the tube through the vocal cords. Supraglottic airway devices are alternatives to tracheal intubation. Drug administration routes for adults and children: first choice i.v., second choice intraosseous (i.o.). Vasopressors: 1 mg epinephrine every 3-5 min i.v. After the third unsuccessful defibrillation amiodarone (300 mg i.v.), repetition (150 mg) possible. Sodium bicarbonate (50 ml 8.4%) only for excessive hyperkaliemia, metabolic acidosis, or intoxication with tricyclic antidepressants. Consider aminophylline (5 mg/kgBW). Thrombolysis during spontaneous circulation only for myocardial infarction or massive pulmonary embolism; during on-going cardiopulmonary resuscitation (CPR) only when indications of massive pulmonary embolism. Active compression-decompression (ACD-CPR) and inspiratory threshold valve (ITV-CPR) are not superior to good standard CPR. CHILDREN: Most effective improvement of outcome by prevention of full cardiorespiratory arrest. Basic life support: initially five rescue breaths, followed by chest compressions (100-120/min depth about one third of chest diameter), compression-ventilation ratio 15:2. Foreign body airway obstruction with insufficient cough: alternate back blows and chest compressions (infants), or abdominal compressions (children >1 year). Treatment of potentially reversible causes: ("4 Hs and 4 Ts") hypoxia and hypovolaemia, hypokalaemia and hyperkalaemia, hypothermia, and tension pneumothorax, tamponade, toxic/therapeutic disturbances, thrombosis (coronary/pulmonary). Advanced life support: adrenaline (epinephrine) 10 µg/kgBW i.v. or i.o. every 3-5 min. Defibrillation (4 J/kgBW; monophasic or biphasic) followed by 2 min CPR, then ECG and pulse check. NEWBORNS: Initially inflate the lungs with bag-valve mask ventilation (p(AW) 20-40 cmH2O). If heart rate remains <60/min, start chest compressions (120 chest compressions/min) and ventilation with a ratio 3:1. Maintain normothermia in preterm babies by covering them with foodgrade plastic wrap or similar. POSTRESUSCITATION PHASE: Early protocol-based intensive care stabilization; initiate mild hypothermia early regardless of initial cardiac rhythm [32-34°C for 12-24 h (adults) or 24 h (children); slow rewarming (<0.5°C/h)]. Consider percutaneous coronary intervention (PCI) in patients with presumed cardiac ischemia. Prediction of CPR outcome is not possible at the scene, determine neurological outcome <72 h after cardiac arrest with somatosensory evoked potentials, biochemical tests and neurological examination. ACUTE CORONARY SYNDROME: Even if only a weak suspicion of an acute coronary syndrome is present, record a prehospital 12-lead ECG. In parallel to pain therapy, administer aspirin (160-325 mg p.o. or i.v.) and clopidogrel (75-600 mg depending on strategy); in ST-elevation myocardial infarction (STEMI) and planned PCI also prasugrel (60 mg p.o.). Antithrombins, such as heparin (60 IU/kgBW, max. 4000 IU), enoxaparin, bivalirudin or fondaparinux depending on the diagnosis (STEMI or non-STEMI-ACS) and the planned therapeutic strategy. In STEMI define reperfusion strategy depending on duration of symptoms until PCI, age and location of infarction. TRAUMA: In severe hemorrhagic shock, definitive control of bleeding is the most important goal. For successful CPR of trauma patients a minimal intravascular volume status and management of hypoxia are essential. Aggressive fluid resuscitation, hyperventilation and excessive ventilation pressure may impair outcome in patients with severe hemorrhagic shock. TRAINING: Any CPR training is better than nothing; simplification of contents and processes is the main aim.


Subject(s)
Cardiopulmonary Resuscitation/standards , Guidelines as Topic , Acute Coronary Syndrome/drug therapy , Acute Coronary Syndrome/therapy , Adult , Algorithms , Anesthesiology/education , Child , Critical Care , Electric Countershock/standards , Electrocardiography , Heart Arrest/drug therapy , Heart Arrest/therapy , Humans , Infant, Newborn , Respiratory Mechanics , Thrombolytic Therapy , Wounds and Injuries/therapy
4.
Anaesthesist ; 55(9): 958-66, 968-72, 974-9, 2006 Sep.
Article in German | MEDLINE | ID: mdl-16915404

ABSTRACT

The new CPR guidelines are based on a scientific consensus which was reached by 281 international experts. Chest compressions (100/min, 4-5 cm deep) should be performed in a ratio of 30:2 with ventilation (tidal volume 500 ml, Ti 1 s, FIO2 if possible 1.0). After a single defibrillation attempt (initially biphasic 150-200 J, monophasic 360 J, subsequently with the respective highest energy), chest compressions are initiated again immediately for 2 min. Endotracheal intubation is the gold standard; other airway devices may be employed as well depending on individual skills. Drug administration routes for adults and children: first choice IV, second choice intraosseous, third choice endobronchial [epinephrine dose 2-3x (adults) or 10x (pediatric patients) higher than IV]. Vasopressors: 1 mg epinephrine every 3-5 min IV. After the third unsuccessful defibrillation attempt amiodarone IV (300 mg); repetition (150 mg) possible. Sodium bicarbonate (1 ml/kg 8.4%) only in excessive hyperkalemia, metabolic acidosis, or intoxication with tricyclic antidepressants. Consider atropine (3 mg) and aminophylline (5 mg/kg). Thrombolysis during spontaneous circulation only in myocardial infarction or massive pulmonary embolism; during CPR only during massive pulmonary embolism. Cardiopulmonary bypass only after cardiac surgery, hypothermia or intoxication. Pediatrics: best improvement in outcome by preventing cardiocirculatory collapse. Alternate chest thumps and chest compression (infants), or abdominal compressions (>1-year-old) in foreign body airway obstruction. Initially five breaths, followed by chest compressions (100/min; approximately 1/3 of chest diameter): ventilation ratio 15:2. Treatment of potentially reversible causes (4 "Hs", "HITS": hypoxia, hypovolemia, hypo- and hyperkaliemia, hypothermia, cardiac tamponade, intoxication, thrombo-embolism, tension pneumothorax). Epinephrine 10 microg/kg IV or intraosseously, or 100 microg (endobronchially) every 3-5 min. Defibrillation (4 J/kg; monophasic oder biphasic) followed by 2 min CPR, then ECG and pulse check. Newborns: inflate the lungs with bag-valve mask ventilation. If heart rate<60/min chest compressions:ventilation ratio 3:1 (120 chest compressions/min). Postresuscitation phase: initiate mild hypothermia [32-34 degrees C for 12-24 h; slow rewarming (<0.5 degrees C/h)]. Prediction of CPR outcome is not possible at the scene; determining neurological outcome within 72 h after cardiac arrest with evoked potentials, biochemical tests and physical examination. Even during low suspicion for an acute coronary syndrome, record a prehospital 12-lead ECG. In parallel to pain therapy, aspirin (160-325 mg PO or IV) and in addition clopidogrel (300 mg PO). As antithrombin, heparin (60 IU/kg, max. 4000 IU) or enoxaparine. In ST-segment elevation myocardial infarction, define reperfusion strategy depending on duration of symptoms until PCI (prevent delay>90 min until PCI). Stroke is an emergency and needs to be treated in a stroke unit. A CT scan is the most important evaluation, MRT may replace a CT scan. After hemorrhage exclusion, thrombolysis within 3 h of symptom onset (0.9 mg/kg rt-PA IV; max 90 mg within 60 min, 10% of the entire dosage as initial bolus, no aspirin, no heparin within the first 24 h). In severe hemorrhagic shock, definite control of bleeding is the most important goal. For successful CPR of trauma patients, a minimal intravascular volume status and management of hypoxia are essential. Aggressive fluid resuscitation, hyperventilation, and excessive ventilation pressure may impair outcome in severe hemorrhagic shock. Despite bad prognosis, CPR in trauma patients may be successful in select cases. Any CPR training is better than nothing; simplification of contents and processes remains important.


Subject(s)
Cardiopulmonary Resuscitation/standards , Adult , Anti-Arrhythmia Agents/therapeutic use , Bronchodilator Agents/therapeutic use , Cardiopulmonary Resuscitation/instrumentation , Child , Coronary Disease/therapy , Electric Countershock , Emergency Medical Services , Europe , Humans , Hypothermia, Induced , Infant, Newborn , Prognosis , Respiration, Artificial , Shock/prevention & control , Thrombolytic Therapy , Vasoconstrictor Agents/therapeutic use , Water-Electrolyte Balance/drug effects , Wounds and Injuries/therapy
5.
Resuscitation ; 51(2): 151-8, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11718970

ABSTRACT

BACKGROUND AND OBJECTIVE: Chest compressions before initial defibrillation attempts have been shown to increase successful defibrillation. This animal study was designed to assess whether ventricular fibrillation mean frequency after 90 s of basic life support cardiopulmonary resuscitation (CPR) may be used as an indicator of coronary perfusion and mean arterial pressure during CPR. METHODS AND RESULTS: After 4 min of ventricular fibrillation cardiac arrest in a porcine model, CPR was performed manually for 3 min. Mean ventricular fibrillation frequency and amplitude, together with coronary perfusion and mean arterial pressure were measured before initiation of chest compressions, and after 90 s and 3 min of basic life support CPR. Increases in fibrillation mean frequency correlated with increases in coronary perfusion and mean arterial pressure after both 90 s (R=0.77, P<0.0001, n=30; R=0.75, P<0.0001, n=30, respectively) and 3 min (R=0.61, P<0.001, n=30; R=0.78, P<0.0001, n=30, respectively) of basic life support CPR. Increases in fibrillation mean amplitude correlated with increases in mean arterial pressure after both 90 s (R=0.46, P<0.01; n=30) and 3 min (R=0.42, P<0.05, n=30) of CPR. Correlation between fibrillation mean amplitude and coronary perfusion pressure was not significant both at 90 s and 3 min of CPR. CONCLUSIONS: In this porcine laboratory model, 90 s and 3 min of CPR improved ventricular fibrillation mean frequency, which correlated positively with coronary perfusion pressure, and mean arterial pressure.


Subject(s)
Blood Pressure , Cardiopulmonary Resuscitation , Coronary Circulation , Ventricular Fibrillation/physiopathology , Ventricular Fibrillation/therapy , Animals , Disease Models, Animal , Heart Rate , Linear Models , Swine , Treatment Outcome
6.
Anaesthesist ; 50(5): 342-57, 2001 May.
Article in German | MEDLINE | ID: mdl-11417270

ABSTRACT

In August 2000, the American Heart Association and the European Resuscitation Council published the conclusions of the International Guidelines 2000 Conference on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care which contains both the new recommendations and an in-depth review. The discussions and drafting began at a conference in March 1999, followed by a second conference in September 1999, both attended by approx. 250 participants and another conference in February 2000 which was attended by approx. 500 participants. Review of the current state of science, discussion and final consensus continued subsequently via email, conference calls, fax, and personal conversation. During the entire process, scientists and resuscitation councils from all over the world participated, with participants from the United States comprising approx. 60%, and scientists from outside of the United States comprising approx. 40%. In order to ensure that the CPR recomendations are not dominated by any given nation or resuscitation council, most topics were reviewed and interpretated by two scientists from the United States and two scientists from outside of the United States. Accordingly, changes in these new CPR recommendations are the result of an evidence-based review by worldwide experts. The most important changes in the recommendations according to the authors are discontinuation of the pulse-check for lay people, 500 ml instead of 800-1200 ml tidal volume during bag-valve-mask ventilation (FiO2 > 0.4) of a patient with an unprotected airway, verifying correct endotracheal intubation with capnography and an esophageal detector, employing mechanical devices such as interposed abdominal compression CPR, vest CPR, active-compression-decompression CPR, and the inspiratory threshold valve (ITV) CPR as alternatives or adjuncts to standard manual chest compressions, defibrillation with < 200 Joule biphasic instead of with 200-360 Joule monophasic impulses, vasopressin (40 units) and epinephrine (1 mg) as comparable drugs to treat patients with ventricular fibrillation, amiodarone (300 mg) for shock-refractory ventricular fibrillation and intravenous lysis for patients who have suffered a stroke.


Subject(s)
Cardiopulmonary Resuscitation/standards , American Heart Association , Cardiopulmonary Resuscitation/instrumentation , Cardiopulmonary Resuscitation/methods , Humans , Monitoring, Physiologic
7.
Crit Care Med ; 28(4): 1096-100, 2000 Apr.
Article in English | MEDLINE | ID: mdl-10809289

ABSTRACT

OBJECTIVE: The purpose of this study was to evaluate the effect of vasopressin vs. saline placebo on catecholamine plasma concentrations during cardiopulmonary resuscitation (CPR). DESIGN: Prospective, randomized laboratory investigation by using an established porcine CPR model with instrumentation for measurement of hemodynamic variables, vital organ blood flow, and return of spontaneous circulation. SETTING: University hospital laboratory. SUBJECTS: Sixteen domestic pigs. INTERVENTIONS: After 15 mins of untreated cardiac arrest and 3 mins of CPR, 16 pigs were randomized to be treated with either 0.8 U/kg vasopressin (n = 8) or placebo (normal saline; n = 8). Arterial epinephrine and norepinephrine plasma concentrations were sampled at prearrest, after 1.5 mins of chest compressions, and at 1.5 mins and 5 mins after drug administration during CPR. MEASUREMENTS AND MAIN RESULTS: In comparison with placebo pigs at 1.5 and 5 mins after drug administration, animals resuscitated with vasopressin had significantly (p < .01) higher mean +/- SEM left ventricular myocardial (131+/-27 vs. 10+/-1 mL x mins(-1) x 100 g(-1) and 62+/-13 vs. 9+/-2 mL x mins(-1) x 100 g(-1)); total cerebral (90+/-8 vs. 14+/-3 mL x mins(-1) x 100 g(-1) and 51+/-4 vs. 12+/-2 mL x mins(-1) x 100 g(-1)); and adrenal gland perfusion (299+/-36 vs. 38+/-7 mL x mins(-1) x 100 g(-1) and 194+/-23 vs. 29+/-5 mL x mins(-1) x 100 g(-1)). Significantly lower mean +/- SEM epinephrine concentrations in the vasopressin pigs compared with the placebo group were measured 1.5 mins and 5 mins after drug administration, (24167+/-7919 vs. 80223+/-19391 pg/mL [p < .01] and 8346+/-1454 vs. 71345+/-10758 pg/mL [p < .01]). Mean +/- SEM norepinephrine plasma concentrations in the vasopressin animals in comparison with placebo were at 1.5 and 5 mins after drug administration significantly lower (41729+/-13918 vs. 82756+/-9904 pg/mL [p = .01] and 10642+/-3193 vs. 62170+/-8797 pg/mL [p < .01]). CONCLUSIONS: Administration of vasopressin during CPR resulted in significantly superior vital organ blood flow, but significantly decreased endogenous catecholamine plasma concentrations when compared with placebo.


Subject(s)
Arginine Vasopressin/pharmacology , Cardiopulmonary Resuscitation , Catecholamines/blood , Vasoconstrictor Agents/pharmacology , Animals , Blood Circulation/drug effects , Cardiopulmonary Resuscitation/methods , Cardiopulmonary Resuscitation/statistics & numerical data , Heart Arrest/blood , Heart Arrest/therapy , Prospective Studies , Random Allocation , Statistics, Nonparametric , Swine , Time Factors
11.
Resuscitation ; 30(2): 117-26, 1995 Oct.
Article in English | MEDLINE | ID: mdl-8560100

ABSTRACT

We evaluated the force-depth compression characteristics of 8 different CPR manikins during mechanical cardiopulmonary resuscitation by a thumper. The force required to compress the manikin's thorax of 1, 2, 3, 4 and 5 cm was measured. It ranged between 6.3 and 14 kp at a depth of 1 cm, 11.6-30 kp at 2 cm, 17-38 kp at 3 cm, 22.5-54 kp at 4 cm and 28.5-69 kp at 5 cm. The manikins with a spring in the thorax (Ambu Man, Ambu MultiMan, Dräger CPR-Max, Laerdal Resusci Anne) as well as one without (Ambu CPR Pal) showed a rather linear relationship between depth and force required to compress the chest. Ambu Man, set at 'High', Laerdal Resusci Anne and Dräger CPR-Max revealed a slight increase in resistance, whereas 2 manikins without a spring (Laerdal Little Anne, Laerdal Family Trainer) and 1 manikin with a plastic spring-like construction (Actar 911) exhibited less resistance with increasing depth. According to our results, the manikins are not uniform in their compression characteristics; some become nonlinear when 3 cm of compression is exceeded. For correct CPR it is of utmost importance that the CPR trainee learns to compress in a sufficiently strong manner, but simultaneously to avoid an exceedingly high depth of compression irrespective of the thorax resistance. In order to prepare the CPR student for the varying chest resistances of the human body, we recommend to train CPR on manikins with different chest resistances.


Subject(s)
Cardiopulmonary Resuscitation/instrumentation , Manikins , Cardiopulmonary Resuscitation/education , Elasticity , Equipment Design , Female , Humans , Male , Materials Testing , Pressure , Regression Analysis , Stress, Mechanical , Teaching Materials , Thorax
SELECTION OF CITATIONS
SEARCH DETAIL
...