Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
1.
Article in English | MEDLINE | ID: mdl-38727660

ABSTRACT

BACKGROUND: Desmin (DES) pathogenic variants cause a small proportion of arrhythmogenic cardiomyopathy (ACM). Outcomes data on DES-related ACM are scarce. OBJECTIVES: This study sought to provide information on the clinical phenotype and outcomes of patients with ACM caused by pathogenic variants of the DES gene in a multicenter cohort. METHODS: We collected phenotypic and outcomes data from 16 families with DES-related ACM from 10 European centers. We assessed in vitro DES aggregates. Major cardiac events were compared to historical controls with lamin A/C truncating variant (LMNA-tv) and filament C truncating variant (FLNC-tv) ACM. RESULTS: Of 82 patients (54% males, median age: 36 years), 11 experienced sudden cardiac death (SCD) (n = 7) or heart failure death (HFd)/heart transplantation (HTx) (n = 4) before clinical evaluation. Among 68 survivors, 59 (86%) presented signs of cardiomyopathy, with left ventricular (LV) dominant (50%) or biventricular (34%) disease. Mean LV ejection fraction was 51% ± 13%; 36 of 53 had late gadolinium enhancement (ring-like pattern in 49%). During a median of 6.73 years (Q1-Q3: 3.55-9.52 years), the composite endpoint (sustained ventricular tachycardia, aborted SCD, implantable cardioverter-defibrillator therapy, SCD, HFd, and HTx) was achieved in 15 additional patients with HFd/HTx (n = 5) and SCD/aborted SCD/implantable cardioverter-defibrillator therapy/sustained ventricular tachycardia (n = 10). Male sex (P = 0.004), nonsustained ventricular tachycardia (P = 0.017) and LV ejection fraction ≤50% (P = 0.012) were associated with the composite endpoint. Males with DES variants had similar outcomes to historical FLNC-tv and LMNA-tv controls. However, females showed better outcomes than those with LMNA-tv. In vitro experiments showed the characteristic finding of DES aggregates in 7 of 12 variants. CONCLUSIONS: DES ACM is associated with poor outcomes which can be predicted with potentially successful treatments, underscoring the importance of familial evaluation and genetic studies to identify at risk individuals.

3.
Int J Cardiol ; 407: 132023, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38583594

ABSTRACT

Arrhythmogenic Cardiomyopathy (AC), an inherited cardiac disorder characterized by myocardial fibrofatty replacement, carries a significant risk of sudden cardiac death (SCD) due to ventricular arrhythmias. A comprehensive multimodality imaging approach, including echocardiography, cardiac magnetic resonance imaging (CMR), and cardiac computed tomography (CCT), allows for accurate diagnosis, effective risk stratification, vigilant monitoring, and appropriate intervention, leading to improved patient outcomes and the prevention of SCD. Echocardiography is primary tool ventricular morphology and function assessment, CMR provides detailed visualization, CCT is essential in early stages for excluding congenital anomalies and coronary artery disease. Echocardiography is preferred for follow-up, with CMR capturing changes over time. The strategic use of these imaging methods aids in confirming AC, differentiating it from other conditions, tracking its progression, managing complications, and addressing end-stage scenarios.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Multimodal Imaging , Humans , Multimodal Imaging/methods , Arrhythmogenic Right Ventricular Dysplasia/diagnostic imaging , Arrhythmogenic Right Ventricular Dysplasia/diagnosis , Arrhythmogenic Right Ventricular Dysplasia/therapy , Arrhythmogenic Right Ventricular Dysplasia/physiopathology , Disease Management , Magnetic Resonance Imaging, Cine/methods , Echocardiography/methods , Death, Sudden, Cardiac/prevention & control , Death, Sudden, Cardiac/etiology
5.
J Am Coll Cardiol ; 83(8): 797-807, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38383094

ABSTRACT

BACKGROUND: In recent years, it has become evident that arrhythmogenic cardiomyopathy (ACM) displays a wide spectrum of ventricular involvement. Furthermore, the influence of various clinical phenotypes on the prognosis of the disease is currently being assessed. OBJECTIVES: The purpose of this study was to evaluate the impact of phenotypic expression in ACM on patient outcomes. METHODS: We conducted an analysis of 446 patients diagnosed with ACM. These patients were categorized into 3 groups based on their phenotype: arrhythmogenic right ventricular cardiomyopathy (ARVC) (right-dominant ACM), arrhythmogenic left ventricular cardiomyopathy (ALVC) (left-dominant ACM), and biventricular arrhythmogenic cardiomyopathy (BIV). We compared clinical, instrumental, and genetic findings among these groups and also evaluated their outcomes RESULTS: Overall, 44% of patients were diagnosed with ARVC, 23% with ALVC, and 33% with BIV forms. Subjects showing with ARVC and BIV phenotype had a significantly higher incidence of life-threatening ventricular arrhythmias compared with ALVC (P < 0.001). On the other hand, heart failure, heart transplantation, and death caused by cardiac causes were more frequent in individuals with BIV forms compared to those with ALVC and ARVC (P < 0.001). Finally, patients with an ALVC phenotype had a higher incidence of hot phases compared with those with ARVC and BIV forms (P = 0.013). CONCLUSIONS: The comparison of ACM phenotypes demonstrated that patients with right ventricular involvement, such as ARVC and BIV forms, exhibit a higher incidence of life-threatening ventricular arrhythmias. Conversely, ACM forms characterized by left ventricular involvement, such as ALVC and BIV, show a higher incidence of heart failure, heart transplantation, and hot phases.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Cardiomyopathies , Heart Failure , Humans , Arrhythmias, Cardiac/epidemiology , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/diagnosis , Cardiomyopathies/genetics , Heart Failure/epidemiology , Phenotype
6.
JACC Clin Electrophysiol ; 10(4): 670-681, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38340116

ABSTRACT

BACKGROUND: Mitral valve prolapse (MVP) may be associated with ventricular arrhythmias (VA) even in the absence of significant valvular regurgitation. Curling, mitral annulus disjunction (MAD) and myocardial fibrosis (late gadolinium enhancement [LGE]) may account for arrhythmogenesis. OBJECTIVES: This study investigated the determinants of VA in patients with MVP without significant regurgitation. METHODS: This study included 108 patients with MVP (66 female; median age: 48 years) without valve regurgitation. All patients underwent 12-lead electrocardiography, 12-lead 24-hour electrocardiographic Holter monitoring, exercise stress test, and cardiac magnetic resonance. Patients were divided into 2 groups (arrhythmic and no-arrhythmic MVP), according to the presence of VA with a right bundle branch block pattern. RESULTS: The 62 patients (57%) with arrhythmic MVP showed: 1) higher MAD (median length: 6.0 vs 3.2 mm; P = 0.017); 2) higher prevalence of curling (79% vs 52%; P = 0.012); and 3) higher prevalence of left ventricular LGE (79% vs 52%; P = 0.012). Mediation analysis showed that curling had both a direct (P = 0.03) and indirect effect mediated by LGE (P = 0.04) on VA, whereas the association between MAD and VA was completely mediated by LGE. Patients with severe VA showed more pronounced morphofunctional alterations, in terms of MAD (7.0 vs 4.6 mm; P = 0.004) and presence and severity of curling (respectively, 91% vs 64%; P = 0.010; and 4 vs 3 mm; P = 0.004), compared to those without severe VA. CONCLUSIONS: In patients with MVP the occurrence of VA with right bundle branch block morphology is the expression of more severe morphologic, mechanical, and tissue alterations. Curling has both a direct and an indirect effect on VA.


Subject(s)
Arrhythmias, Cardiac , Mitral Valve Prolapse , Humans , Female , Middle Aged , Mitral Valve Prolapse/physiopathology , Mitral Valve Prolapse/diagnostic imaging , Mitral Valve Prolapse/complications , Male , Adult , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/epidemiology , Electrocardiography , Magnetic Resonance Imaging , Electrocardiography, Ambulatory , Exercise Test , Aged
7.
Br J Sports Med ; 58(5): 255-260, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38233088

ABSTRACT

OBJECTIVE: Evidence on the increased risk of sports-related sudden cardiac arrest and death (SCA/D) and the potential benefit of cardiovascular preparticipation screening (PPS) in children is limited. We assessed the burden and circumstances of SCA/D and the diagnostic yield of cardiovascular PPS in children aged 8-15 years. METHODS: Data on the incidence and causes of SCA/D from 2011 to 2020 were obtained from the Veneto region (Italy) sudden death registry, hospital records and local press. During the same period, we assessed the results of annual PPS in 25 251 young competitive athletes aged 8-15 years who underwent 58 185 evaluations (mean 2.3/athlete) in Padua, Italy. RESULTS: Over 10 years, 26 SCA/D occurred in children aged 8-15 years in the Veneto region: 6 in athletes (incidence 0.7/100 000/year, all ≥12 years) versus 20 in non-athletes (0.7/100 000/year, 17/20 ≥12 years). In total, 4/6 athletes versus 1/20 non-athletes survived. The cause of SCA/D remained unexplained in four athletes and in nine non-athletes. No athlete suffered SCA/D from structural diseases potentially identifiable by PPS. The incidence of SCA/D in athletes and non-athletes was 0.2/100 000/year in the 8-11 years group versus 1.3/100 000/year in the 12-15 years group. PPS identified 26 new diagnoses of cardiovascular diseases (CVDs) at risk of SCA/D, more often in children ≥12 years old (0.06%/evaluation) than <12 years old (0.02%/evaluation, p=0.02). Among athletes with a negative PPS, two suffered unexplained SCA/D during follow-up, one during exercise. CONCLUSIONS: In children aged 8-15 years, the incidence of SCA/D and the yield of PPS for identifying at-risk CVD were both substantially higher in those ≥12 years, suggesting that systematic PPS may be more useful beyond this age.


Subject(s)
Cardiovascular System , Sports , Child , Humans , Death, Sudden, Cardiac/epidemiology , Death, Sudden, Cardiac/prevention & control , Death, Sudden, Cardiac/etiology , Athletes , Mass Screening
8.
Int J Cardiol ; 395: 131447, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37844667

ABSTRACT

Arrhythmogenic cardiomyopathy (ACM) is a heart muscle disease characterized by prominent "non-ischemic" myocardial scarring predisposing to ventricular electrical instability. Diagnostic criteria for the original phenotype, arrhythmogenic right ventricular cardiomyopathy (ARVC), were first proposed in 1994 and revised in 2010 by an international Task Force (TF). A 2019 International Expert report appraised these previous criteria, finding good accuracy for diagnosis of ARVC but a lack of sensitivity for identification of the expanding phenotypic disease spectrum, which includes left-sided variants, i.e., biventricular (ABVC) and arrhythmogenic left ventricular cardiomyopathy (ALVC). The ARVC phenotype together with these left-sided variants are now more appropriately named ACM. The lack of diagnostic criteria for the left ventricular (LV) phenotype has resulted in clinical under-recognition of ACM patients over the 4 decades since the disease discovery. In 2020, the "Padua criteria" were proposed for both right- and left-sided ACM phenotypes. The presently proposed criteria represent a refinement of the 2020 Padua criteria and have been developed by an expert European TF to improve the diagnosis of ACM with upgraded and internationally recognized criteria. The growing recognition of the diagnostic role of CMR has led to the incorporation of myocardial tissue characterization findings for detection of myocardial scar using the late­gadolinium enhancement (LGE) technique to more fully characterize right, biventricular and left disease variants, whether genetic or acquired (phenocopies), and to exclude other "non-scarring" myocardial disease. The "ring-like' pattern of myocardial LGE/scar is now a recognized diagnostic hallmark of ALVC. Additional diagnostic criteria regarding LV depolarization and repolarization ECG abnormalities and ventricular arrhythmias of LV origin are also provided. These proposed upgrading of diagnostic criteria represents a working framework to improve management of ACM patients.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Cardiomyopathies , Humans , Cicatrix , Consensus , Contrast Media , Gadolinium , Cardiomyopathies/diagnostic imaging , Arrhythmias, Cardiac/diagnosis
9.
J Cardiovasc Transl Res ; 16(6): 1276-1286, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37418234

ABSTRACT

The presence of multiple pathogenic variants in desmosomal genes (DSC2, DSG2, DSP, JUP, and PKP2) in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) has been linked to a severe phenotype. However, the pathogenicity of variants is reclassified frequently, which may result in a changed clinical risk prediction. Here, we present the collection, reclassification, and clinical outcome correlation for the largest series of ARVC patients carrying multiple desmosomal pathogenic variants to date (n = 331). After reclassification, only 29% of patients remained carriers of two (likely) pathogenic variants. They reached the composite endpoint (ventricular arrhythmias, heart failure, and death) significantly earlier than patients with one or no remaining reclassified variant (hazard ratios of 1.9 and 1.8, respectively). Periodic reclassification of variants contributes to more accurate risk stratification and subsequent clinical management strategy. Graphical Abstract.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Humans , Arrhythmogenic Right Ventricular Dysplasia/diagnosis , Arrhythmogenic Right Ventricular Dysplasia/genetics , Plakophilins/genetics , Phenotype , Arrhythmias, Cardiac , Mutation
10.
Clin Cardiol ; 46(9): 1072-1081, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37357443

ABSTRACT

Arrhythmogenic cardiomyopathy (ACM) is a genetic heart muscle disease, structurally characterized by progressive fibro-fatty replacement of the normal myocardium and clinically by ventricular arrhythmias (VAs). Predominantly thanks to the use of cardiac magnetic resonance, we have learnt that the spectrum of the disease encompasses not only the classical right ventricular phenotype, but also biventricular and left dominant variants. Sport activity contributes to the phenotypic expression and progression of ACM and may trigger life-threatening VAs and sudden cardiac death (SCD). We conducted a review of the literature about ACM and its implications in Sport Cardiology and summarized the main findings in this topic. Early identification of affected athletes through preparticipation screening (PPS) is fundamental but, while classical right-ventricular or biventricular phenotypes are usually suspected because of electrocardiogram (ECG) and echocardiographic abnormalities, variants with predominant left ventricular involvement are often characterized by normal ECG and unremarkable echocardiography. Usually the only manifestations of such variants are exercise-induced VAs and for this reason exercise testing may empower the diagnostic yield of the PPS. Patients with ACM are not eligible to competitive sports activity, but low-to-moderate intensity physical activity under medical supervision is possible in most cases.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Cardiology , Cardiomyopathies , Sports , Humans , Arrhythmogenic Right Ventricular Dysplasia/diagnosis , Arrhythmogenic Right Ventricular Dysplasia/genetics , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/etiology
11.
J Cardiovasc Med (Hagerstown) ; 24(Suppl 2): e116-e127, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37186562

ABSTRACT

Exercise has undisputable benefits and is an important therapy component for most cardiovascular diseases, with a proven role in reducing mortality. On the contrary, exercise may paradoxically trigger sudden cardiac arrest in patients with cardiomyopathies requiring refrain from competitive sports participation. The 2020 European guidelines for patients with cardiovascular disease provided indication for sports participation for patients with cardiac conditions, including cardiomyopathies. Although in some cases, the knowledge of the natural history of the disease and the risk of death during intensive exercise is more robust, in others, the evidence is scarce. Therefore, recommendations are not available for all possible scenarios with several uncertainties. In addition, many patients aspire to continue competitive sports or practise recreational activities after a diagnosis of cardiomyopathy. These aspects generate concern for the physician, who should make complex decisions, and confronts the request to design specific exercise programmes without specific indications. This article will review the available evidence on the sports-related risk of sudden cardiac death or cardiovascular events and the progression of the disease in cardiomyopathies.


Subject(s)
Cardiomyopathies , Heart Diseases , Sports , Humans , Cardiomyopathies/therapy , Cardiomyopathies/diagnosis , Exercise , Death, Sudden, Cardiac/etiology , Death, Sudden, Cardiac/prevention & control
12.
J Cardiovasc Med (Hagerstown) ; 24(Suppl 2): e178-e186, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37186568

ABSTRACT

Cardiomyopathies are disease of the cardiac muscle largely due to genetic alterations of proteins with 'structural' or 'functional' roles within the cardiomyocyte, going from the regulation of contraction-relaxation, metabolic and energetic processes to ionic fluxes. Modifications occurring to these proteins are responsible, in the vast majority of cases, for the phenotypic manifestations of the disease, including hypertrophic, dilated, arrhythmogenic and restrictive cardiomyopathies. Secondary nonhereditary causes to be excluded include infections, toxicity from drugs or alcohol or medications, hormonal imbalance and so on. Obtaining a phenotypic definition and an etiological diagnosis is becoming increasingly relevant and feasible, thanks to the availability of new tailored treatments and the diagnostic advancements made particularly in the field of genetics. This is, for example, the case for transthyretin cardiac amyloidosis, Fabry disease or dilated cardiomyopathies due to laminopathies. For these diseases, specific medications have been developed, and a more tailored arrhythmic risk stratification guides the implantation of a defibrillator. In addition, new medications directly targeting the altered protein responsible for the phenotype are becoming available (including the myosin inhibitors mavacantem and aficamten, monoclonal antibodies against Ras-MAPK, genetic therapies for sarcoglycanopathies), thus making a precision medicine approach less unrealistic even in the field of cardiomyopathies. For these reasons, a contemporary approach to cardiomyopathies must consider diagnostic algorithms founded on the clinical suspicion of the disease and developed towards a more precise phenotypic definition and etiological diagnosis, based on a multidisciplinary methodology putting together specialists from different disciplines, facilities for advanced imaging testing and genetic and anatomopathological competencies.


Subject(s)
Cardiomyopathies , Cardiomyopathy, Dilated , Humans , Precision Medicine , Workflow , Cardiomyopathies/diagnosis , Cardiomyopathies/genetics , Cardiomyopathies/therapy , Cardiomyopathy, Dilated/diagnosis , Phenotype
13.
Eur Heart J Suppl ; 25(Suppl C): C144-C154, 2023 May.
Article in English | MEDLINE | ID: mdl-37125320

ABSTRACT

The designation of 'arrhythmogenic cardiomyopathy' reflects the evolving concept of a heart muscle disease affecting not only the right ventricle (ARVC) but also the left ventricle (LV), with phenotypic variants characterized by a biventricular (BIV) or predominant LV involvement (ALVC). Herein, we use the term 'scarring/arrhythmogenic cardiomyopathy (S/ACM)' to emphasize that the disease phenotype is distinctively characterized by loss of ventricular myocardium due to myocyte death with subsequent fibrous or fibro-fatty scar tissue replacement. The myocardial scarring predisposes to potentially lethal ventricular arrhythmias and underlies the impairment of systolic ventricular function. S/ACM is an 'umbrella term' which includes a variety of conditions, either genetic or acquired (mostly post-inflammatory), sharing the typical 'scarring' phenotypic features of the disease. Differential diagnoses include 'non-scarring' heart diseases leading to either RV dilatation from left-to-right shunt or LV dilatation/dysfunction from a dilated cardiomyopathy. The development of 2020 upgraded criteria ('Padua criteria') for diagnosis of S/ACM reflected the evolving clinical experience with the expanding spectrum of S/ACM phenotypes and the advances in cardiac magnetic resonance (CMR) imaging. The Padua criteria aimed to improve the diagnosis of S/ACM by incorporation of CMR myocardial tissue characterization findings. Risk stratification of S/ACM patients is mostly based on arrhythmic burden and ventricular dysfunction severity, although other ECG or imaging parameters may have a role. Medical therapy is crucial for treatment of ventricular arrhythmias and heart failure. Implantable cardioverter defibrillator (ICD) is the only proven life-saving treatment, despite its significant morbidity because of device-related complications and inappropriate shocks. Selection of patients who can benefit the most from ICD therapy is one of the most challenging issues in clinical practice.

14.
J Clin Med ; 12(7)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37048743

ABSTRACT

Desmoplakin (DSP) is a desmosomal protein that plays an essential role for cell-to-cell adhesion within the cardiomyocytes. The first association between DSP genetic variants and the presence of a myocardial disease referred to patients with Carvajal syndrome. Since then, several reports have linked the DSP gene to familial forms of arrhythmogenic (ACM) and dilated cardiomyopathies. Left-dominant ACM is the most common phenotype in individuals carrying DSP variants. More recently, a new entity-"Desmoplakin cardiomyopathy"-was described as a distinct form of cardiomyopathy characterized by frequent left ventricular involvement with extensive fibrosis, high arrhythmic risk, and episodes of acute myocardial injury. The purpose of this review was to summarize the available evidence on DSP cardiomyopathy and to identify existing gaps in knowledge that need clarification from upcoming research.

15.
Int J Cardiol ; 382: 33-39, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37059308

ABSTRACT

BACKGROUND: Long-term data on the potential advantages of combining the third-generation subcutaneous implantable cardioverter defibrillator (S-ICD) with modern software upgrade including the "SMART Pass", modern programming strategies and the intermuscular (IM) two-incision implantation technique in arrhythmogenic cardiomyopathy (ACM) with different phenotypic variants are lacking. In this study we evaluated the long-term outcome of patients with ACM who underwent third-generation S-ICD (Emblem, Boston Scientific) and IM two-incision technique. METHODS: The study population included 23 consecutive patients [70% male, median age 31 (24-46) years] diagnosed with ACM with different phenotypic variants who received third-generation S-ICD implantation with the IM two-incision technique. RESULTS: During a median follow-up of 45.5 months [16-65], 4 patients (17.4%) received a at least one inappropriate shock (IS), with median annual event rate of 4.5%. Extra-cardiac oversensing (myopotential) during effort represented the only cause of IS. No IS due to T-wave oversensing (TWOS) were recorded. Only one patient (4.3%) experienced device-related complication consisting of premature cell battery depletion requiring device replacement. No device explantation because of need for anti-tachycardia pacing or ineffective therapy occurred. There was no significant difference between patients who did and did not experienced IS with regard to baseline clinical, ECG and technical characteristics. Five patients (21.7%) received appropriate shocks on ventricular arrythmias. CONCLUSIONS: According to our findings, although the third-generation S-ICD implanted with the IM two-incision technique appears to be associated with a low risk of complications and IS due to cardiac oversensing, the risk of IS due to myopotential mainly during effort should be considered.


Subject(s)
Cardiomyopathies , Defibrillators, Implantable , Humans , Male , Adult , Female , Defibrillators, Implantable/adverse effects , Follow-Up Studies , Treatment Outcome , Arrhythmias, Cardiac/diagnosis , Cardiomyopathies/surgery , Cardiomyopathies/etiology , Death, Sudden, Cardiac/etiology
16.
J Clin Med ; 12(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36836107

ABSTRACT

The term arrhythmogenic cardiomyopathy (ACM) describes a large spectrum of myocardial diseases characterized by progressive fibrotic or fibrofatty replacement, which gives the substrate for the occurrence of ventricular tachyarrhythmias and the development of ventricular dysfunction. This condition may exclusively affect the left ventricle, leading to the introduction of the term arrhythmogenic left ventricular cardiomyopathy (ALVC). The clinical features of ALVC are progressive fibrotic replacement with the absence or mild dilation of the LV and the occurrence of ventricular arrhythmias within the left ventricle. In 2019, the diagnostic criteria for the diagnosis of ALVC, based on family history and clinical, electrocardiographic, and imaging features, have been proposed. However, since the significant clinical and imaging overlap with other cardiac diseases, genetic testing with the demonstration of a pathogenic variant in an ACM-related gene is required for diagnostic confirmation. In ALVC, the multimodality imaging approach comprises different imaging techniques, such as echocardiography, cardiac magnetic resonance, and cardiac nuclear imaging. It provides essential information for the diagnosis, differential diagnosis, sudden cardiac death risk stratification, and management purposes. This review aims to elucidate the current role of the different multimodality imaging techniques in patients with ALVC.

17.
Eur Radiol ; 33(1): 270-282, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35788758

ABSTRACT

Arrhythmogenic cardiomyopathy (ACM) is a genetically determined heart muscle disease characterized by fibro-fatty myocardial replacement, clinically associated with malignant ventricular arrhythmias and sudden cardiac death. Originally described a disease with a prevalent right ventricular (RV) involvement, subsequently two other phenotypes have been recognized, such as the left dominant and the biventricular phenotypes, for which a recent International Expert consensus document provided upgrade diagnostic criteria (the 2020 "Padua Criteria"). In this novel workup for the diagnosis of the entire spectrum of phenotypic variants of ACM, including left ventricular (LV) variants, cardiac magnetic resonance (CMR) has emerged as the cardiac imaging technique of choice, due to its capability of detailed morpho-functional and tissue characterization evaluation of both RV and LV. In this review, the key role of CMR in the diagnosis of ACM is outlined, including the supplemental value for the characterization of the disease variants. An ACM-specific CMR study protocol, as well as strengths and weaknesses of each imaging technique, is also provided. KEY POINTS: • Arrhythmogenic cardiomyopathy includes three different phenotypes: dominant right, biventricular, and dominant left. • In 2020, diagnostic criteria have been updated and cardiac magnetic resonance has emerged as the cardiac imaging technique of choice. • This aim of this review is to provide an update of the current state of art regarding the use of CMR in ACM, with a particular focus on novel diagnostic criteria, CMR protocols, and prognostic significance of CMR findings in ACM.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Humans , Arrhythmogenic Right Ventricular Dysplasia/diagnostic imaging , Arrhythmogenic Right Ventricular Dysplasia/genetics , Heart Ventricles , Magnetic Resonance Imaging , Death, Sudden, Cardiac/pathology , Phenotype
18.
Heart Fail Rev ; 28(1): 77-95, 2023 01.
Article in English | MEDLINE | ID: mdl-35536402

ABSTRACT

Cardiac magnetic resonance (CMR) has become an essential tool for the evaluation of patients affected or at risk of developing cardiomyopathies (CMPs). In fact, CMR not only provides precise data on cardiac volumes, wall thickness, mass and systolic function but it also a non-invasive characterization of myocardial tissue, thus helping the early diagnosis and the precise phenotyping of the different CMPs, which is essential for early and individualized treatment of patients. Furthermore, several CMR characteristics, such as the presence of extensive LGE or abnormal mapping values, are emerging as prognostic markers, therefore helping to define patients' risk. Lastly new experimental CMR techniques are under investigation and might contribute to widen our knowledge in the field of CMPs. In this perspective, CMR appears an essential tool to be systematically applied in the diagnostic and prognostic work-up of CMPs in clinical practice. This review provides a deep overview of clinical applicability of standard and emerging CMR techniques in the management of CMPs.


Subject(s)
Cardiology , Cardiomyopathies , Heart Diseases , Humans , Cardiomyopathies/diagnostic imaging , Cardiomyopathies/pathology , Heart , Heart Diseases/diagnostic imaging , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Predictive Value of Tests , Contrast Media , Magnetic Resonance Imaging, Cine/methods
19.
Eur J Prev Cardiol ; 30(2): 107-116, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36166397

ABSTRACT

AIMS: The non-ischaemic left ventricular scar (NILVS) is an emerging substrate of ventricular arrhythmias (VA) in the athlete. We tested the diagnostic value of VA reproducibility at repeated exercise testing (ET). METHODS AND RESULTS: We included consecutive athletes who underwent cardiac magnetic resonance (CMR) for evaluation of VA and two consecutive ET off-therapy within 12 months. Those with a positive family history of premature sudden death/cardiomyopathy, syncope/pre-syncope, ECG or echocardiography abnormalities, or low-risk VA (exercise-suppressed infundibular or fascicular VA) were excluded. The NILVS was defined as subepicardial/midmyocardial stria of late gadolinium enhancement involving >5% of the LV mass. Reproducibility was defined as the occurrence of VA with the same pattern and behaviour during repeated ET. Of 325 athletes who underwent CMR for evaluation of VA, 75 were included, and 30 showed NILVS involving three [2-4] LV segments. At first ET, athletes with NILVS showed a higher prevalence of exercise-induced VA (93% vs. 53%, P < 0.001), while other VA characteristics did not differ between groups. At repeated ET, reproducibility was observed in 97% of athletes with vs. 13% without NILVS (P < 0.001). The remaining 87% of athletes with normal CMR either did not show any VA at repeated ET (59%) or showed arrhythmias with different patterns, mostly infundibular. Reproducibility yielded a positive predictive value for NILVS of 83% and a negative predictive value of 98%. CONCLUSION: VA reproducibility at repeated ET predicted an underlying NILVS in athletes with VA and otherwise normal clinical work-up. This finding may improve risk stratification and appropriate CMR referral of athletes with apparently idiopathic VA.


Subject(s)
Contrast Media , Exercise Test , Humans , Cicatrix , Reproducibility of Results , Gadolinium , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/epidemiology , Athletes
20.
J Clin Med ; 11(22)2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36431211

ABSTRACT

BACKGROUND: In the last few years, a phenotypic variant of arrhythmogenic cardiomyopathy (ACM) labeled arrhythmogenic left ventricular cardiomyopathy (ALVC) has been defined and researched. This type of cardiomyopathy is characterized by a predominant left ventricular (LV) involvement with no or minor right ventricular (RV) abnormalities. Data on the specific risk and management of pregnancy in women affected by ALVC are, thus far, not available. We have sought to characterize pregnancy course and outcomes in women affected by ALVC through the evaluation of a series of childbearing patients. METHODS: A series of consecutive female ALVC patients were analyzed in a cross-sectional, retrospective study. Study protocol included 12-lead ECG assessments, 24-h Holter ECG evaluations, 2D-echocardiogram tests, cardiac magnetic resonance assessments, and genetic analysis. Furthermore, the long-term disease course of childbearing patients was compared with a group of nulliparous ALVC women. RESULTS: A total of 35 patients (mean age 45 ± 9 years, 51% probands) were analyzed. Sixteen women (46%) reported a pregnancy, for a total of 27 singleton viable pregnancies (mean age at first childbirth 30 ± 9 years). Before pregnancy, all patients were in the NYHA class I and none of the patients reported a previous heart failure (HF) episode. No significant differences were found between childbearing and nulliparous women regarding ECG features, LV dimensions, function, and extent of late enhancement. Overall, 7 patients (20%, 4 belonging to the childbearing group) experienced a sustained ventricular tachycardia and 2 (6%)-one for each group-showed heart failure (HF) episodes. The analysis of arrhythmia-free survival patients did not show significant differences between childbearing and nulliparous women. CONCLUSIONS: In a cohort of ALVC patients without previous episodes of HF, pregnancy was well tolerated, with no significant influence on disease progression and degree of electrical instability. Further studies on a larger cohort of women with different degrees of disease extent and genetic background are needed in order to achieve a more comprehensive knowledge regarding the outcome of pregnancy in ALVC patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...