Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 25(10): 11048-11064, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28788790

ABSTRACT

Nitrogen vacancy (NV) color centers in diamond are a leading modality for both superresolution optical imaging and nanoscale magnetic field sensing. In this work, we address the key challenge of performing optical magnetic imaging and spectroscopy selectively on multiple NV centers that are located within a diffraction-limited field-of-view. We use spin-RESOLFT microscopy to enable precision nanoscale mapping of magnetic field patterns with resolution down to ~20 nm, while employing a low power optical depletion beam. Moreover, we use a shallow NV to demonstrate the detection of proton nuclear magnetic resonance (NMR) signals exterior to the diamond, with 50 nm lateral imaging resolution and without degrading the proton NMR linewidth.

2.
Appl Phys Lett ; 101(8): 82410, 2012 Aug 20.
Article in English | MEDLINE | ID: mdl-22991479

ABSTRACT

A high-nitrogen-concentration diamond sample was subjected to 200-keV electron irradiation using a transmission electron microscope. The optical and spin-resonance properties of the nitrogen-vacancy (NV) color centers were investigated as a function of the irradiation dose up to 6.4 × 10(21) e(-)/cm(2). The microwave transition frequency of the NV(-) center was found to shift by up to 0.6% (17.1 MHz) and the linewidth broadened with increasing electron-irradiation dose. Unexpectedly, the measured magnetic sensitivity is best at the lowest irradiation dose, even though the NV concentration increases monotonically with increasing dose. This is in large part due to a sharp reduction in optically detected spin contrast at higher doses.

SELECTION OF CITATIONS
SEARCH DETAIL
...