Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 349(6249): 706-10, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26273049

ABSTRACT

Changes in the formation of dense water in the Arctic Ocean and Nordic Seas [the "Arctic Mediterranean" (AM)] probably contributed to the altered climate of the last glacial period. We examined past changes in AM circulation by reconstructing radiocarbon ventilation ages of the deep Nordic Seas over the past 30,000 years. Our results show that the glacial deep AM was extremely poorly ventilated (ventilation ages of up to 10,000 years). Subsequent episodic overflow of aged water into the mid-depth North Atlantic occurred during deglaciation. Proxy data also suggest that the deep glacial AM was ~2° to 3°C warmer than modern temperatures; deglacial mixing of the deep AM with the upper ocean thus potentially contributed to the melting of sea ice, icebergs, and terminal ice-sheet margins.

2.
Nature ; 424(6946): 299-302, 2003 Jul 17.
Article in English | MEDLINE | ID: mdl-12867978

ABSTRACT

The shells of the planktonic foraminifer Neogloboquadrina pachyderma have become a classical tool for reconstructing glacial-interglacial climate conditions in the North Atlantic Ocean. Palaeoceanographers utilize its left- and right-coiling variants, which exhibit a distinctive reciprocal temperature and water mass related shift in faunal abundance both at present and in late Quaternary sediments. Recently discovered cryptic genetic diversity in planktonic foraminifers now poses significant questions for these studies. Here we report genetic evidence demonstrating that the apparent 'single species' shell-based records of right-coiling N. pachyderma used in palaeoceanographic reconstructions contain an alternation in species as environmental factors change. This is reflected in a species-dependent incremental shift in right-coiling N. pachyderma shell calcite delta18O between the Last Glacial Maximum and full Holocene conditions. Guided by the percentage dextral coiling ratio, our findings enhance the use of delta18O records of right-coiling N. pachyderma for future study. They also highlight the need to genetically investigate other important morphospecies to refine their accuracy and reliability as palaeoceanographic proxies.


Subject(s)
Genetic Variation/genetics , Plankton/growth & development , Plankton/genetics , Animals , Atlantic Ocean , Calcium Carbonate , Genotype , Geography , Geologic Sediments , Greenland , Molecular Sequence Data , Morphogenesis , Norway , Phenotype , Population Density , RNA, Ribosomal/genetics , Species Specificity , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...