Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Plant Dis ; 108(3): 711-724, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37755420

ABSTRACT

Rhizoctonia crown and root rot (RCRR), caused by Rhizoctonia solani, can cause severe yield and quality losses in sugar beet. The most common strategy to control the disease is the development of resistant varieties. In the breeding process, field experiments with artificial inoculation are carried out to evaluate the performance of genotypes and varieties. The phenotyping process in breeding trials requires constant monitoring and scoring by skilled experts. This work is time demanding and shows bias and heterogeneity according to the experience and capacity of each individual person. Optical sensors and artificial intelligence have demonstrated great potential to achieve higher accuracy than human raters and the possibility to standardize phenotyping applications. A workflow combining red-green-blue and multispectral imagery coupled to an unmanned aerial vehicle (UAV), as well as machine learning techniques, was applied to score diseased plants and plots affected by RCRR. Georeferenced annotation of UAV-orthorectified images was carried out. With the annotated images, five convolutional neural networks were trained to score individual plants. The training was carried out with different image analysis strategies and data augmentation. The custom convolutional neural network trained from scratch together with pretrained MobileNet showed the best precision in scoring RCRR (0.73 to 0.85). The average per plot of spectral information was used to score the plots, and the benefit of adding the information obtained from the score of individual plants was compared. For this purpose, machine learning models were trained together with data management strategies, and the best-performing model was chosen. A combined pipeline of random forest and k-nearest neighbors has shown the best weighted precision (0.67). This research provides a reliable workflow for detecting and scoring RCRR based on aerial imagery. RCRR is often distributed heterogeneously in trial plots; therefore, considering the information from individual plants of the plots showed a significant improvement in UAV-based automated monitoring routines.


Subject(s)
Beta vulgaris , Unmanned Aerial Devices , Humans , Rhizoctonia , Artificial Intelligence , Plant Breeding , Machine Learning , Vegetables , Sugars
2.
Gigascience ; 112022 06 17.
Article in English | MEDLINE | ID: mdl-35715875

ABSTRACT

BACKGROUND: Unmanned aerial vehicle (UAV)-based image retrieval in modern agriculture enables gathering large amounts of spatially referenced crop image data. In large-scale experiments, however, UAV images suffer from containing a multitudinous amount of crops in a complex canopy architecture. Especially for the observation of temporal effects, this complicates the recognition of individual plants over several images and the extraction of relevant information tremendously. RESULTS: In this work, we present a hands-on workflow for the automatized temporal and spatial identification and individualization of crop images from UAVs abbreviated as "cataloging" based on comprehensible computer vision methods. We evaluate the workflow on 2 real-world datasets. One dataset is recorded for observation of Cercospora leaf spot-a fungal disease-in sugar beet over an entire growing cycle. The other one deals with harvest prediction of cauliflower plants. The plant catalog is utilized for the extraction of single plant images seen over multiple time points. This gathers a large-scale spatiotemporal image dataset that in turn can be applied to train further machine learning models including various data layers. CONCLUSION: The presented approach improves analysis and interpretation of UAV data in agriculture significantly. By validation with some reference data, our method shows an accuracy that is similar to more complex deep learning-based recognition techniques. Our workflow is able to automatize plant cataloging and training image extraction, especially for large datasets.


Subject(s)
Agriculture , Remote Sensing Technology , Agriculture/methods , Computers , Crops, Agricultural , Remote Sensing Technology/methods
3.
Sci Rep ; 12(1): 8297, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35585118

ABSTRACT

Although CT and MRI are standard procedures in cirrhosis diagnosis, differentiation of etiology based on imaging is not established. This proof-of-concept study explores the potential of deep learning (DL) to support imaging-based differentiation of the etiology of liver cirrhosis. This retrospective, monocentric study included 465 patients with confirmed diagnosis of (a) alcoholic (n = 221) and (b) other-than-alcoholic (n = 244) cirrhosis. Standard T2-weighted single-slice images at the caudate lobe level were randomly split for training with fivefold cross-validation (85%) and testing (15%), balanced for (a) and (b). After automated upstream liver segmentation, two different ImageNet pre-trained convolutional neural network (CNN) architectures (ResNet50, DenseNet121) were evaluated for classification of alcohol-related versus non-alcohol-related cirrhosis. The highest classification performance on test data was observed for ResNet50 with unfrozen pre-trained parameters, yielding an area under the receiver operating characteristic curve of 0.82 (95% confidence interval (CI) 0.71-0.91) and an accuracy of 0.75 (95% CI 0.64-0.85). An ensemble of both models did not lead to significant improvement in classification performance. This proof-of-principle study shows that deep-learning classifiers have the potential to aid in discriminating liver cirrhosis etiology based on standard MRI.


Subject(s)
Deep Learning , Humans , Liver Cirrhosis/diagnostic imaging , Liver Cirrhosis, Alcoholic/diagnostic imaging , Magnetic Resonance Imaging , Retrospective Studies
4.
Epilepsia Open ; 6(3): 597-606, 2021 09.
Article in English | MEDLINE | ID: mdl-34250754

ABSTRACT

OBJECTIVE: To identify non-EEG-based signals and algorithms for detection of motor and non-motor seizures in people lying in bed during video-EEG (VEEG) monitoring and to test whether these algorithms work in freely moving people during mobile EEG recordings. METHODS: Data of three groups of adult people with epilepsy (PwE) were analyzed. Group 1 underwent VEEG with additional devices (accelerometry, ECG, electrodermal activity); group 2 underwent VEEG; and group 3 underwent mobile EEG recordings both including one-lead ECG. All seizure types were analyzed. Feature extraction and machine-learning techniques were applied to develop seizure detection algorithms. Performance was expressed as sensitivity, precision, F1 score, and false positives per 24 hours. RESULTS: The algorithms were developed in group 1 (35 PwE, 33 seizures) and achieved best results (F1 score 56%, sensitivity 67%, precision 45%, false positives 0.7/24 hours) when ECG features alone were used, with no improvement by including accelerometry and electrodermal activity. In group 2 (97 PwE, 255 seizures), this ECG-based algorithm largely achieved the same performance (F1 score 51%, sensitivity 39%, precision 73%, false positives 0.4/24 hours). In group 3 (30 PwE, 51 seizures), the same ECG-based algorithm failed to meet up with the performance in groups 1 and 2 (F1 score 27%, sensitivity 31%, precision 23%, false positives 1.2/24 hours). ECG-based algorithms were also separately trained on data of groups 2 and 3 and tested on the data of the other groups, yielding maximal F1 scores between 8% and 26%. SIGNIFICANCE: Our results suggest that algorithms based on ECG features alone can provide clinically meaningful performance for automatic detection of all seizure types. Our study also underscores that the circumstances under which such algorithms were developed, and the selection of the training and test data sets need to be considered and limit the application of such systems to unseen patient groups behaving in different conditions.


Subject(s)
Epilepsy , Seizures , Adult , Algorithms , Electrocardiography , Electroencephalography/methods , Epilepsy/diagnosis , Humans , Seizures/diagnosis
5.
Eur J Neurosci ; 47(7): 824-831, 2018 04.
Article in English | MEDLINE | ID: mdl-29473693

ABSTRACT

Absolute (i.e. measured) rhinal and hippocampal phase values are predictive for memory formation. It has been an open question, whether the capability of mediotemporal structures to react to stimulus presentation with phase shifts may be similarly indicative of successful memory formation. We analysed data from 27 epilepsy patients implanted with depth electrodes in the hippocampus and entorhinal cortex, who performed a continuous word recognition task. Electroencephalographic phase information related to the first presentation of repeatedly presented words was used for prediction of subsequent remembering vs. forgetting applying a support vector machine. The capability to predict successful memory formation based on stimulus-related phase shifts was compared to that based on absolute phase values. Average hippocampal phase shifts were larger and rhinal phase shifts were more accumulated for later remembered compared to forgotten trials. Nevertheless, prediction based on absolute phase values clearly outperformed phase shifts and there was no significant increase in prediction accuracies when combining both measures. Our findings indicate that absolute rhinal and hippocampal phases and not stimulus-related phase shifts are most relevant for successful memory formation. Absolute phases possibly affect memory formation via influencing neural membrane potentials and thereby controlling the timing of neural firing.


Subject(s)
Brain Waves/physiology , Entorhinal Cortex/physiology , Hippocampus/physiology , Memory Consolidation/physiology , Mental Recall/physiology , Recognition, Psychology/physiology , Adult , Electrodes, Implanted , Electroencephalography , Epilepsy/physiopathology , Female , Humans , Male , Middle Aged , Young Adult
6.
Neuroimage ; 139: 127-135, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27311642

ABSTRACT

Mediotemporal EEG characteristics are closely related to long-term memory formation. It has been reported that rhinal and hippocampal EEG measures reflecting the stability of phases across trials are better suited to distinguish subsequently remembered from forgotten trials than event-related potentials or amplitude-based measures. Theoretical models suggest that the phase of EEG oscillations reflects neural excitability and influences cellular plasticity. However, while previous studies have shown that the stability of phase values across trials is indeed a relevant predictor of subsequent memory performance, the effect of absolute single-trial phase values has been little explored. Here, we reanalyzed intracranial EEG recordings from the mediotemporal lobe of 27 epilepsy patients performing a continuous word recognition paradigm. Two-class classification using a support vector machine was performed to predict subsequently remembered vs. forgotten trials based on individually selected frequencies and time points. We demonstrate that it is possible to successfully predict single-trial memory formation in the majority of patients (23 out of 27) based on only three single-trial phase values given by a rhinal phase, a hippocampal phase, and a rhinal-hippocampal phase difference. Overall classification accuracy across all subjects was 69.2% choosing frequencies from the range between 0.5 and 50Hz and time points from the interval between -0.5s and 2s. For 19 patients, above chance prediction of subsequent memory was possible even when choosing only time points from the prestimulus interval (overall accuracy: 65.2%). Furthermore, prediction accuracies based on single-trial phase surpassed those based on single-trial power. Our results confirm the functional relevance of mediotemporal EEG phase for long-term memory operations and suggest that phase information may be utilized for memory enhancement applications based on deep brain stimulation.


Subject(s)
Cortical Synchronization/physiology , Entorhinal Cortex/physiology , Hippocampus/physiology , Memory/physiology , Mental Recall/physiology , Models, Neurological , Nerve Net/physiology , Adolescent , Adult , Brain Mapping/methods , Computer Simulation , Electroencephalography/methods , Female , Humans , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity , Task Performance and Analysis , Young Adult
7.
Sci Rep ; 6: 22482, 2016 Mar 09.
Article in English | MEDLINE | ID: mdl-26957018

ABSTRACT

Modern phenotyping and plant disease detection methods, based on optical sensors and information technology, provide promising approaches to plant research and precision farming. In particular, hyperspectral imaging have been found to reveal physiological and structural characteristics in plants and to allow for tracking physiological dynamics due to environmental effects. In this work, we present an approach to plant phenotyping that integrates non-invasive sensors, computer vision, as well as data mining techniques and allows for monitoring how plants respond to stress. To uncover latent hyperspectral characteristics of diseased plants reliably and in an easy-to-understand way, we "wordify" the hyperspectral images, i.e., we turn the images into a corpus of text documents. Then, we apply probabilistic topic models, a well-established natural language processing technique that identifies content and topics of documents. Based on recent regularized topic models, we demonstrate that one can track automatically the development of three foliar diseases of barley. We also present a visualization of the topics that provides plant scientists an intuitive tool for hyperspectral imaging. In short, our analysis and visualization of characteristic topics found during symptom development and disease progress reveal the hyperspectral language of plant diseases.


Subject(s)
Hordeum/physiology , Phenotype , Plant Diseases , Stress, Physiological , Computational Biology/methods , Optical Imaging/methods
8.
J Synchrotron Radiat ; 23(2): 579-89, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26917147

ABSTRACT

Elemental distribution images acquired by imaging X-ray fluorescence analysis can contain high degrees of redundancy and weakly discernible correlations. In this article near real-time non-negative matrix factorization (NMF) is described for the analysis of a number of data sets acquired from samples of a bi-modal α+ß Ti-6Al-6V-2Sn alloy. NMF was used for the first time to reveal absorption artefacts in the elemental distribution images of the samples, where two phases of the alloy, namely α and ß, were in superposition. The findings and interpretation of the NMF results were confirmed by Monte Carlo simulation of the layered alloy system. Furthermore, it is shown how the simultaneous factorization of several stacks of elemental distribution images provides uniform basis vectors and consequently simplifies the interpretation of the representation.

9.
PLoS One ; 10(1): e0116902, 2015.
Article in English | MEDLINE | ID: mdl-25621489

ABSTRACT

Understanding the response dynamics of plants to biotic stress is essential to improve management practices and breeding strategies of crops and thus to proceed towards a more sustainable agriculture in the coming decades. In this context, hyperspectral imaging offers a particularly promising approach since it provides non-destructive measurements of plants correlated with internal structure and biochemical compounds. In this paper, we present a cascade of data mining techniques for fast and reliable data-driven sketching of complex hyperspectral dynamics in plant science and plant phenotyping. To achieve this, we build on top of a recent linear time matrix factorization technique, called Simplex Volume Maximization, in order to automatically discover archetypal hyperspectral signatures that are characteristic for particular diseases. The methods were applied on a data set of barley leaves (Hordeum vulgare) diseased with foliar plant pathogens Pyrenophora teres, Puccinia hordei and Blumeria graminis hordei. Towards more intuitive visualizations of plant disease dynamics, we use the archetypal signatures to create structured summaries that are inspired by metro maps, i.e. schematic diagrams of public transport networks. Metro maps of plant disease dynamics produced on several real-world data sets conform to plant physiological knowledge and explicitly illustrate the interaction between diseases and plants. Most importantly, they provide an abstract and interpretable view on plant disease progression.


Subject(s)
Hordeum/microbiology , Plant Diseases/microbiology , Plant Leaves/microbiology , Ascomycota , Data Mining , Host-Pathogen Interactions , Spectroscopy, Near-Infrared
10.
IEEE Trans Pattern Anal Mach Intell ; 35(10): 2371-86, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23969383

ABSTRACT

This paper addresses the problem of video alignment. We present efficient approaches that allow for spatiotemporal alignment of two sequences. Unlike most related works, we consider independently moving cameras that capture a 3D scene at different times. The novelty of the proposed method lies in the adaptation and extension of an efficient information retrieval framework that casts the sequences as an image database and a set of query frames, respectively. The efficient retrieval builds on the recently proposed quad descriptor. In this context, we define the 3D Vote Space (VS) by aggregating votes through a multiquerying (multiscale) scheme and we present two solutions based on VS entries; a causal solution that permits online synchronization and a global solution through multiscale dynamic programming. In addition, we extend the recently introduced ECC image-alignment algorithm to the temporal dimension that allows for spatial registration and synchronization refinement with subframe accuracy. We investigate full search and quantization methods for short descriptors and we compare the proposed schemes with the state of the art. Experiments with real videos by moving or static cameras demonstrate the efficiency of the proposed method and verify its effectiveness with respect to spatiotemporal alignment accuracy.


Subject(s)
Artificial Intelligence , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Pattern Recognition, Automated/methods , Photography/methods , Subtraction Technique , Video Recording/methods , Algorithms , Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity , Spatio-Temporal Analysis
11.
Funct Plant Biol ; 39(11): 878-890, 2012 Nov.
Article in English | MEDLINE | ID: mdl-32480838

ABSTRACT

Early water stress recognition is of great relevance in precision plant breeding and production. Hyperspectral imaging sensors can be a valuable tool for early stress detection with high spatio-temporal resolution. They gather large, high dimensional data cubes posing a significant challenge to data analysis. Classical supervised learning algorithms often fail in applied plant sciences due to their need of labelled datasets, which are difficult to obtain. Therefore, new approaches for unsupervised learning of relevant patterns are needed. We apply for the first time a recent matrix factorisation technique, simplex volume maximisation (SiVM), to hyperspectral data. It is an unsupervised classification approach, optimised for fast computation of massive datasets. It allows calculation of how similar each spectrum is to observed typical spectra. This provides the means to express how likely it is that one plant is suffering from stress. The method was tested for drought stress, applied to potted barley plants in a controlled rain-out shelter experiment and to agricultural corn plots subjected to a two factorial field setup altering water and nutrient availability. Both experiments were conducted on the canopy level. SiVM was significantly better than using a combination of established vegetation indices. In the corn plots, SiVM clearly separated the different treatments, even though the effects on leaf and canopy traits were subtle.

SELECTION OF CITATIONS
SEARCH DETAIL
...