Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 381(6664): 1338-1345, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37733871

ABSTRACT

Axon regeneration can be induced across anatomically complete spinal cord injury (SCI), but robust functional restoration has been elusive. Whether restoring neurological functions requires directed regeneration of axons from specific neuronal subpopulations to their natural target regions remains unclear. To address this question, we applied projection-specific and comparative single-nucleus RNA sequencing to identify neuronal subpopulations that restore walking after incomplete SCI. We show that chemoattracting and guiding the transected axons of these neurons to their natural target region led to substantial recovery of walking after complete SCI in mice, whereas regeneration of axons simply across the lesion had no effect. Thus, reestablishing the natural projections of characterized neurons forms an essential part of axon regeneration strategies aimed at restoring lost neurological functions.


Subject(s)
Axons , Nerve Regeneration , Paralysis , Recovery of Function , Spinal Cord Injuries , Walking , Animals , Mice , Axons/physiology , Nerve Regeneration/genetics , Nerve Regeneration/physiology , Neurons/physiology , Paralysis/physiopathology , Spinal Cord Injuries/physiopathology , Connectome
2.
Nature ; 611(7936): 540-547, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36352232

ABSTRACT

A spinal cord injury interrupts pathways from the brain and brainstem that project to the lumbar spinal cord, leading to paralysis. Here we show that spatiotemporal epidural electrical stimulation (EES) of the lumbar spinal cord1-3 applied during neurorehabilitation4,5 (EESREHAB) restored walking in nine individuals with chronic spinal cord injury. This recovery involved a reduction in neuronal activity in the lumbar spinal cord of humans during walking. We hypothesized that this unexpected reduction reflects activity-dependent selection of specific neuronal subpopulations that become essential for a patient to walk after spinal cord injury. To identify these putative neurons, we modelled the technological and therapeutic features underlying EESREHAB in mice. We applied single-nucleus RNA sequencing6-9 and spatial transcriptomics10,11 to the spinal cords of these mice to chart a spatially resolved molecular atlas of recovery from paralysis. We then employed cell type12,13 and spatial prioritization to identify the neurons involved in the recovery of walking. A single population of excitatory interneurons nested within intermediate laminae emerged. Although these neurons are not required for walking before spinal cord injury, we demonstrate that they are essential for the recovery of walking with EES following spinal cord injury. Augmenting the activity of these neurons phenocopied the recovery of walking enabled by EESREHAB, whereas ablating them prevented the recovery of walking that occurs spontaneously after moderate spinal cord injury. We thus identified a recovery-organizing neuronal subpopulation that is necessary and sufficient to regain walking after paralysis. Moreover, our methodology establishes a framework for using molecular cartography to identify the neurons that produce complex behaviours.


Subject(s)
Neurons , Paralysis , Spinal Cord Injuries , Spinal Cord , Walking , Animals , Humans , Mice , Neurons/physiology , Paralysis/genetics , Paralysis/physiopathology , Paralysis/therapy , Spinal Cord/cytology , Spinal Cord/physiology , Spinal Cord/physiopathology , Spinal Cord Injuries/genetics , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/therapy , Walking/physiology , Electric Stimulation , Lumbosacral Region/innervation , Neurological Rehabilitation , Sequence Analysis, RNA , Gene Expression Profiling
3.
Nat Commun ; 12(1): 1925, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33771986

ABSTRACT

A spinal cord injury usually spares some components of the locomotor circuitry. Deep brain stimulation (DBS) of the midbrain locomotor region and epidural electrical stimulation of the lumbar spinal cord (EES) are being used to tap into this spared circuitry to enable locomotion in humans with spinal cord injury. While appealing, the potential synergy between DBS and EES remains unknown. Here, we report the synergistic facilitation of locomotion when DBS is combined with EES in a rat model of severe contusion spinal cord injury leading to leg paralysis. However, this synergy requires high amplitudes of DBS, which triggers forced locomotion associated with stress responses. To suppress these undesired responses, we link DBS to the intention to walk, decoded from cortical activity using a robust, rapidly calibrated unsupervised learning algorithm. This contingency amplifies the supraspinal descending command while empowering the rats into volitional walking. However, the resulting improvements may not outweigh the complex technological framework necessary to establish viable therapeutic conditions.


Subject(s)
Deep Brain Stimulation/methods , Disease Models, Animal , Lumbar Vertebrae/physiopathology , Motor Cortex/physiopathology , Spinal Cord Injuries/therapy , Spinal Cord/physiopathology , Walking/physiology , Animals , Electric Stimulation/methods , Female , Humans , Locomotion/physiology , Mesencephalon/physiopathology , Neurons/physiology , Rats, Inbred Lew , Spinal Cord Injuries/physiopathology
4.
Nat Neurosci ; 21(4): 576-588, 2018 04.
Article in English | MEDLINE | ID: mdl-29556028

ABSTRACT

Severe spinal cord contusions interrupt nearly all brain projections to lumbar circuits producing leg movement. Failure of these projections to reorganize leads to permanent paralysis. Here we modeled these injuries in rodents. A severe contusion abolished all motor cortex projections below injury. However, the motor cortex immediately regained adaptive control over the paralyzed legs during electrochemical neuromodulation of lumbar circuits. Glutamatergic reticulospinal neurons with residual projections below the injury relayed the cortical command downstream. Gravity-assisted rehabilitation enabled by the neuromodulation therapy reinforced these reticulospinal projections, rerouting cortical information through this pathway. This circuit reorganization mediated a motor cortex-dependent recovery of natural walking and swimming without requiring neuromodulation. Cortico-reticulo-spinal circuit reorganization may also improve recovery in humans.


Subject(s)
Motor Cortex/physiology , Recovery of Function/physiology , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology , Spinal Cord/physiology , Vestibular Nucleus, Lateral/physiology , 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology , Animals , Brain/anatomy & histology , Brain/drug effects , Channelrhodopsins/genetics , Channelrhodopsins/metabolism , Disease Models, Animal , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Cortex/drug effects , Psychomotor Performance/drug effects , Quipazine/pharmacology , Rats , Rats, Inbred Lew , Recovery of Function/drug effects , Recovery of Function/genetics , Serotonin Receptor Agonists/pharmacology , Spinal Cord/drug effects , Spinal Cord Injuries/diagnostic imaging , Spinal Cord Injuries/drug therapy , Thy-1 Antigens/administration & dosage , Thy-1 Antigens/genetics , Thy-1 Antigens/metabolism , Vestibular Nucleus, Lateral/drug effects
5.
IEEE Trans Neural Syst Rehabil Eng ; 25(2): 107-118, 2017 02.
Article in English | MEDLINE | ID: mdl-28113858

ABSTRACT

Robotic exoskeletons provide programmable, consistent and controllable active therapeutic assistance to patients with neurological disorders. Here we introduce a prototype and preliminary experimental evaluation of a rehabilitative gait exoskeleton that enables compliant yet effective manipulation of the fragile limbs of rats. To assist the displacements of the lower limbs without impeding natural gait movements, we designed and fabricated soft pneumatic actuators (SPAs). The exoskeleton integrates two customizable SPAs that are attached to a limb. This configuration enables a 1 N force load, a range of motion exceeding 80 mm in the major axis, and speed of actuation reaching two gait cycles/s. Preliminary experiments in rats with spinal cord injury validated the basic features of the exoskeleton. We propose strategies to improve the performance of the robot and discuss the potential of SPAs for the design of other wearable interfaces.


Subject(s)
Artificial Limbs/veterinary , Exoskeleton Device/veterinary , Gait Disorders, Neurologic/physiopathology , Gait Disorders, Neurologic/rehabilitation , Neurological Rehabilitation/instrumentation , Robotics/instrumentation , Animals , Elastic Modulus , Equipment Design/veterinary , Equipment Failure Analysis , Feasibility Studies , Female , Gait Disorders, Neurologic/diagnosis , Pilot Projects , Rats , Rats, Inbred Lew , Reproducibility of Results , Sensitivity and Specificity , Treatment Outcome
6.
Chemistry ; 23(9): 2225-2230, 2017 Feb 10.
Article in English | MEDLINE | ID: mdl-27935197

ABSTRACT

Medium-sized rings are widely considered to be under-represented in biological screening libraries for lead identification in medicinal chemistry. To help address this, a library of medium-sized lactams has been generated by using a simple, scalable and versatile ring-expansion protocol. Analysis of the library by using open-access computational tool LLAMA suggested that these lactams and their derivatives have highly promising physicochemical and 3D spatial properties and thus have much potential in drug discovery.


Subject(s)
Lactams/chemistry , Amino Acids/chemistry , Cyclization , Drug Design , Lactams/chemical synthesis
7.
J Neural Eng ; 13(2): 026007, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26860920

ABSTRACT

OBJECTIVES: We aimed to develop a robotic interface capable of providing finely-tuned, multidirectional trunk assistance adjusted in real-time during unconstrained locomotion in rats and mice. APPROACH: We interfaced a large-scale robotic structure actuated in four degrees of freedom to exchangeable attachment modules exhibiting selective compliance along distinct directions. This combination allowed high-precision force and torque control in multiple directions over a large workspace. We next designed a neurorobotic platform wherein real-time kinematics and physiological signals directly adjust robotic actuation and prosthetic actions. We tested the performance of this platform in both rats and mice with spinal cord injury. MAIN RESULTS: Kinematic analyses showed that the robotic interface did not impede locomotor movements of lightweight mice that walked freely along paths with changing directions and height profiles. Personalized trunk assistance instantly enabled coordinated locomotion in mice and rats with severe hindlimb motor deficits. Closed-loop control of robotic actuation based on ongoing movement features enabled real-time control of electromyographic activity in anti-gravity muscles during locomotion. SIGNIFICANCE: This neurorobotic platform will support the study of the mechanisms underlying the therapeutic effects of locomotor prosthetics and rehabilitation using high-resolution genetic tools in rodent models.


Subject(s)
Equipment Design/methods , Locomotion/physiology , Neural Prostheses , Robotics/methods , Animals , Female , Hindlimb/innervation , Hindlimb/physiopathology , Hindlimb/surgery , Mice , Mice, Inbred C57BL , Neural Prostheses/trends , Rats , Rats, Inbred Lew , Robotics/trends , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/rehabilitation , Spinal Cord Injuries/surgery
8.
Nat Med ; 22(2): 138-45, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26779815

ABSTRACT

Electrical neuromodulation of lumbar segments improves motor control after spinal cord injury in animal models and humans. However, the physiological principles underlying the effect of this intervention remain poorly understood, which has limited the therapeutic approach to continuous stimulation applied to restricted spinal cord locations. Here we developed stimulation protocols that reproduce the natural dynamics of motoneuron activation during locomotion. For this, we computed the spatiotemporal activation pattern of muscle synergies during locomotion in healthy rats. Computer simulations identified optimal electrode locations to target each synergy through the recruitment of proprioceptive feedback circuits. This framework steered the design of spatially selective spinal implants and real-time control software that modulate extensor and flexor synergies with precise temporal resolution. Spatiotemporal neuromodulation therapies improved gait quality, weight-bearing capacity, endurance and skilled locomotion in several rodent models of spinal cord injury. These new concepts are directly translatable to strategies to improve motor control in humans.


Subject(s)
Evoked Potentials, Motor/physiology , Feedback, Sensory/physiology , Hindlimb/physiopathology , Locomotion/physiology , Motor Neurons/physiology , Muscle, Skeletal/physiopathology , Spinal Cord Injuries/physiopathology , Spinal Cord Stimulation , Spinal Nerve Roots/physiopathology , Animals , Biomechanical Phenomena , Computer Simulation , Female , Hindlimb/innervation , Kinetics , Muscle, Skeletal/innervation , Rats , Rats, Inbred Lew , Spinal Cord/physiology , Spinal Cord Injuries/pathology , Spinal Cord Injuries/rehabilitation , Time Factors , X-Ray Microtomography
9.
Acta Neuropathol Commun ; 3: 46, 2015 Jul 25.
Article in English | MEDLINE | ID: mdl-26205255

ABSTRACT

INTRODUCTION: Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons as well as the presence of proteinaceous inclusions named Lewy bodies. α-synuclein (α-syn) is a major constituent of Lewy bodies, and the first disease-causing protein characterized in PD. Several α-syn-based animal models of PD have been developed to investigate the pathophysiology of PD, but none of them recapitulate the full picture of the disease. Ageing is the most compelling and major risk factor for developing PD but its impact on α-syn toxicity remains however unexplored. In this study, we developed and exploited a recombinant adeno-associated viral (AAV) vector of serotype 9 overexpressing mutated α-syn to elucidate the influence of ageing on the dynamics of PD-related neurodegeneration associated with α-syn pathology in different mammalian species. RESULTS: Identical AAV pseudotype 2/9 vectors carrying the DNA for human mutant p.A53T α-syn were injected into the substantia nigra to induce neurodegeneration and synucleinopathy in mice, rats and monkeys. Rats were used first to validate the ability of this serotype to replicate α-syn pathology and second to investigate the relationship between the kinetics of α-syn-induced nigrostriatal degeneration and the progressive onset of motor dysfunctions, strikingly reminiscent of the impairments observed in PD patients. In mice, AAV2/9-hα-syn injection into the substantia nigra was associated with accumulation of α-syn and phosphorylated hα-syn, regardless of mouse strain. However, phenotypic mutants with either accelerated senescence or resistance to senescence did not display differential susceptibility to hα-syn overexpression. Of note, p-α-syn levels correlated with nigrostriatal degeneration in mice. In monkeys, hα-syn-induced degeneration of the nigrostriatal pathway was not affected by the age of the animals. Unlike mice, monkeys did not exhibit correlations between levels of phosphorylated α-syn and neurodegeneration. CONCLUSIONS: In conclusion, AAV2/9-mediated hα-syn induces robust nigrostriatal neurodegeneration in mice, rats and monkeys, allowing translational comparisons among species. Ageing, however, neither exacerbated nigrostriatal neurodegeneration nor α-syn pathology per se. Our unprecedented multi-species investigation thus favours the multiple-hit hypothesis for PD wherein ageing would merely be an aggravating, additive, factor superimposed upon an independent disease process.


Subject(s)
Aging , MPTP Poisoning/pathology , Striatonigral Degeneration/pathology , Substantia Nigra/metabolism , alpha-Synuclein/metabolism , Animals , Biomechanical Phenomena , Callithrix , Disease Models, Animal , Dopamine Plasma Membrane Transport Proteins/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , MPTP Poisoning/chemically induced , Mice , Motor Activity , Principal Component Analysis , Psychomotor Performance/physiology , Rats , Striatonigral Degeneration/etiology , Time Factors , Transduction, Genetic , Tyrosine 3-Monooxygenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...