Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Med Chem ; 63(5): 2074-2094, 2020 03 12.
Article in English | MEDLINE | ID: mdl-31525963

ABSTRACT

This report deals with the design, the synthesis, and the pharmacological evaluation of pyroglutamide-based P2X7 antagonists. A dozen were shown to possess improved properties, among which inhibition of YO-PRO-1/TO-PRO-3 uptake and IL1ß release upon BzATP activation of the receptor and dampening signs of DSS-induced colitis on mice, in comparison with reference antagonist GSK1370319A. Docking study and biological evaluation of synthesized compounds has highlighted new SAR, and low toxicity profiles of pyroglutamides herein described are clues for the finding of a usable h-P2X7 antagonist drug. Such a drug would raise the hope for a cure to many P2X7-dependent pathologies, including inflammatory, neurological, and immune diseases.


Subject(s)
Drug Delivery Systems/methods , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Purinergic P2X Receptor Antagonists/administration & dosage , Purinergic P2X Receptor Antagonists/metabolism , Receptors, Purinergic P2X7/metabolism , Animals , Cell Survival/drug effects , Cell Survival/physiology , Dextran Sulfate/toxicity , Female , HEK293 Cells , Humans , Inflammatory Bowel Diseases/chemically induced , Mice , Mice, Inbred C57BL
2.
Eur J Med Chem ; 165: 347-362, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30583970

ABSTRACT

The high distribution of CB2 receptors in immune cells suggests their important role in the control of inflammation. Growing evidence offers this receptor as an attractive therapeutic target: selective CB2 agonists are able to modulate inflammation without triggering psychotropic effects. In this work, we report a new series of selective CB2 agonists based on a benzo[d]thiazol-2(3H)-one scaffold. This drug design project led to the discovery of compound 9, as a very potent CB2 agonist (Ki = 13.5 nM) with a good selectivity versus CB1. This compound showed no cytotoxicity, acceptable ADME-Tox parameters and demonstrates the ability to counteract colon inflammatory process in vivo.


Subject(s)
Anti-Inflammatory Agents/chemistry , Benzothiazoles/pharmacology , Inflammation/drug therapy , Receptor, Cannabinoid, CB2/agonists , Anti-Inflammatory Agents/pharmacology , Benzothiazoles/chemistry , Cannabinoid Receptor Agonists/chemistry , Cannabinoid Receptor Agonists/pharmacology , Colon/pathology , Humans , Structure-Activity Relationship
4.
Article in English | MEDLINE | ID: mdl-25703951

ABSTRACT

The P2X receptors are seven-transmembrane domain G protein-coupled receptors and the 7 subtypes of P2X receptors identified in humans, and named P2X1 to P2X7, are channel receptors whose endogenous ligand is ATP. New antagonists of the P2X7 receptor were developed, since this purinergic receptor was highlighted to be involved in many diseases such as different types of pain, cancer, ischemia, neurodegenerative diseases (including Parkinson's and Alzheimer's diseases) characterized by inflammatory processes. With the aim of evaluate the impact of chirality on the pharmacological activity of a new P2X7R antagonist, a semi-preparative method was developed in supercritical fluid chromatography (SFC). Among four polysaccharide based chiral stationary phases: Chiralcel OD-H and OJ-H and Chiralpak AS-H and AD-H, the last one namely amylose tris (3,5-dimethylphenylcarbamate) with a mobile phase consisted of carbon dioxide-ethanol (80:20, v/v), led to the successful separation of the enantiomers in short run time and with good resolution. Limits of detection and quantification were calculated and were found equal for compound 1, to 1.37 µM and 4.57 µM respectively, for peak 1 and were equal to 1.60 µM and 5.30 µM respectively, for peak 2 at λ=210 nm. Before carrying out the pharmacological evaluation of each enantiomer, two complementary methodologies, e.g. liquid chromatography and capillary electrophoresis were performed in parallel to improve the limits of detection and quantification to assess the enantiomeric purity. HPLC using a Chiralpak AD stationary phase led to four times lower limits of detection and quantification with regard to SFC. In the same time, capillary electrophoresis involving dual cyclodextrins system constituted of a SBE-ß-CD and a MM-ß-CD mixture enhanced the signal-to-noise ratio and led to similar limits of detection and quantification with regard to SFC. No trace of the other enantiomer was found in the isolated one. Biological activities of individual enantiomers were then evaluated and revealed no cytotoxicity against cell lines and a significant difference in terms of their IC50 values with respect to the investigated racemate (6.43 µM): 3.49 µM for the (R)-enantiomer and >10(-4)µM for the (S)-enantiomer, for compound 1, showing that, this antagonist activity is stereospecific.


Subject(s)
Amylose/analogs & derivatives , Cellulose/analogs & derivatives , Chromatography, High Pressure Liquid/methods , Phenylcarbamates/chemistry , Purinergic P2X Receptor Antagonists/chemistry , Purinergic P2X Receptor Antagonists/isolation & purification , Amylose/chemistry , Cellulose/chemistry , Linear Models , Purinergic P2X Receptor Antagonists/analysis , Reproducibility of Results , Sensitivity and Specificity , Stereoisomerism
5.
Beilstein J Org Chem ; 11: 2785-94, 2015.
Article in English | MEDLINE | ID: mdl-26877800

ABSTRACT

The polymerization of partially methylated ß-cyclodextrin (CRYSMEB) with epichlorohydrin was carried out in the presence of a known amount of toluene as imprinting agent. Three different preparations (D1, D2 and D3) of imprinted polymers were obtained and characterized by solid-state (13)C NMR spectroscopy under cross-polarization magic angle spinning (CP-MAS) conditions. The polymers were prepared by using the same synthetic conditions but with different molar ratios of imprinting agent/monomer, leading to morphologically equivalent materials but with different absorption properties. The main purpose of the work was to find a suitable spectroscopic descriptor accounting for the different imprinting process in three homogeneous polymeric networks. The polymers were characterized by studying the kinetics of the cross-polarization process. This approach is based on variable contact time CP-MAS spectra, referred to as VCP-MAS. The analysis of the VCP-MAS spectra provided two relaxation parameters: T CH (the CP time constant) and T 1ρ (the proton spin-lattice relaxation time in the rotating frame). The results and the analysis presented in the paper pointed out that T CH is sensitive to the imprinting process, showing variations related to the toluene/cyclodextrin molar ratio used for the preparation of the materials. Conversely, the observed values of T 1ρ did not show dramatic variations with the imprinting protocol, but rather confirmed that the three polymers are morphologically similar. Thus the combined use of T CH and T 1ρ can be helpful for the characterization and fine tuning of imprinted polymeric matrices.

6.
Curr Med Chem ; 22(6): 713-29, 2015.
Article in English | MEDLINE | ID: mdl-25515510

ABSTRACT

The purinergic receptor P2X7 is highly expressed in immune peripheral and central cells suggesting its important role in numerous diseases characterized by inflammatory processes like cancer, or neurodegenerative pathologies in relation with modulation of the immune system. Thereby, antagonization of this receptor may be a hopeful therapeutic strategy to treat a large range of diseases. Indeed, selective P2X7 antagonists display beneficial anti-inflammatory, analgesic, and in some cases, anticancer properties. This article will review the involvement of P2X7 in the immune system, the update of P2X7 antagonists series since 2009 and their promising therapeutic potential for the treatment of several immune- related diseases.


Subject(s)
Purinergic P2X Receptor Antagonists/pharmacology , Receptors, Purinergic P2X7/metabolism , Animals , Clinical Trials as Topic , Cytokines/metabolism , Humans , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Purinergic P2X Receptor Antagonists/therapeutic use , Receptors, Purinergic P2X7/chemistry , Receptors, Purinergic P2X7/genetics
7.
J Chromatogr A ; 1363: 257-69, 2014 Oct 10.
Article in English | MEDLINE | ID: mdl-25039068

ABSTRACT

Analytical enantioseparation of three pyroglutamide derivatives with pharmacological activity against the purinergic receptor P2X7, was run in both high-performance liquid chromatography and supercritical fluid chromatography. Four polysaccharide based chiral stationary phases, namely amylose and cellulose tris (3,5-dimethylphenylcarbamate), amylose tris ((S)-α-methylbenzylcarbamate) and cellulose tris (4-methylbenzoate) with various mobile phases consisted of either heptane/alcohol (ethanol and 2-propanol) or carbon dioxide/alcohol (methanol or ethanol) mixtures, were investigated. After analytical screenings, the best conditions were transposed, for compound 1, to semi-preparative scale. Each approach was fully validated to meet the International Conference on Harmonisation requirements and compared. Whereas the limits of detection and quantification were near six-fold better in HPLC than in SFC (respectively 0.20 and 0.66 µM versus 1.11 and 3.53 µM for one of the enantiomers), in terms of low solvent consumption (7.2 mL of EtOH versus 3.2 mL of EtOH plus 28.8 mL of toxic and inflammable heptane per injection in SFC and HPLC, respectively), time effective cost (9 min versus 40 min per injection in SFC and HPLC, respectively) and yields (98% versus 71% in SFC and HPLC, respectively), the latter method proved its ecological superiority.


Subject(s)
Chromatography, High Pressure Liquid/methods , Chromatography, Supercritical Fluid/methods , Polysaccharides/chemistry , Pyrrolidonecarboxylic Acid , Receptors, Purinergic P2X7 , Stereoisomerism
8.
Electrophoresis ; 35(19): 2892-9, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24854176

ABSTRACT

This work concerns the successful enantiomeric separation of pyroglutamic acid derivatives, known to be P2X7 receptor antagonists, achieved by electrokinetic chromatography. After a broad screening, two negatively charged cyclodextrins, sulfobutylether-ß-cyclodextrin (SBE-ß-CD), and highly sulfated-γ-cyclodextrin (HS-γ-CD) were chosen as stereoselective agents to cooperate with the BGE for complexation. A fused silica capillary coated with polyethylene oxide, filled with a phosphate buffer (25 mM, pH 2.5) containing various concentrations of CD, was used. Assuming a 1:1 stoichiometry, calculations of the binding constants, employing the three different linearization plots, were performed from the corrected electrophoretic mobilities values of the enantiomers, at different concentrations of SBE-ß-CD and HS-γ-CD in the BGE. The highest complexation was found with the SBE-ß-CD. Among the three equations, results showed better linearity (R(2) > 0.99) using the y-reciprocal fit. This plotting method was then performed to determine the binding constants of each enantiomer at different temperature for compounds 1 and 2 with SBE-ß-CD and HS-γ-CD in order to access to the thermodynamic parameters of the eight complexes. The linearity of the Van't Hoff plot, in the range of 288-303 K leading to negative enthalpy values, showed that the complexation phenomenon is enthalpically controlled and thermodynamically favored.


Subject(s)
Chromatography, Micellar Electrokinetic Capillary/methods , Purinergic Antagonists/chemistry , Purinergic Antagonists/isolation & purification , gamma-Cyclodextrins/chemistry , Reproducibility of Results , Stereoisomerism , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...