Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(7)2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33918118

ABSTRACT

The objective of this study is to demonstrate the successful functionalization of the surface of a chalcogenide infrared waveguide with the ultimate goal of developing an infrared micro-sensor device. First, a polyisobutylene coating was selected by testing its physico-chemical compatibility with a Ge-Sb-Se selenide surface. To simulate the chalcogenide platform infrared sensor, the detection of benzene, toluene, and ortho-, meta- and para-xylenes was efficaciously performed using a polyisobutylene layer spin-coated on 1 and 2.5 µm co-sputtered selenide films of Ge28Sb12Se60 composition deposited on a zinc selenide prism used for attenuated total reflection spectroscopy. The thickness of the polymer coating was optimized by attenuated total reflection spectroscopy to achieve the highest possible attenuation of water absorption while maintaining the diffusion rate of the pollutant through the polymer film compatible with the targeted in situ analysis. Then, natural water, i.e., groundwater, wastewater, and seawater, was sampled for detection measurement by means of attenuated total reflection spectroscopy. This study is a valuable contribution concerning the functionalization by a hydrophobic polymer compatible with a chalcogenide optical sensor designed to operate in the mid-infrared spectral range to detect in situ organic molecules in natural water.

2.
Sci Rep ; 10(1): 7997, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32409661

ABSTRACT

Despite the renewed interest in rare earth-doped chalcogenide glasses lying mainly in mid-infrared applications, a few comprehensive studies so far have presented the photoluminescence of amorphous chalcogenide films from visible to mid-infrared. This work reports the fabrication of luminescent quaternary sulfide thin films using radio-frequency sputtering and pulsed laser deposition, and the characterization of their chemical composition, morphology, structure, refractive index and Er3+ photoluminescence. The study of Er3+ 4I13/2 level lifetimes enables developing suitable deposition parameters; the dependency of composition, structural and spectroscopic properties on deposition parameters provides a way to tailor the RE-doped thin film properties. The surface roughness is very low for both deposition methods, ensuring reasonable propagation optical losses. The effects of annealing on the sulfide films spectroscopy and lifetimes were assessed. PLD appears consistent composition-wise, and largely independent of the deposition conditions, but radiofrequency magnetron sputtering seems to be more versatile, as one may tailor the film properties through deposition parameters manipulation. The luminescence via rare earth-doped chalcogenide waveguiding micro-structures might find easy-to-use applications concerning telecommunications or on-chip optical sensors for which luminescent sources or amplifiers operating at different wavelengths are required.

3.
J Am Soc Mass Spectrom ; 28(12): 2569-2579, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28852994

ABSTRACT

Laser desorption ionization using time-of-flight mass spectrometer afforded with quadrupole ion trap was used to study As2Ch3 (Ch = S, Se, and Te) bulk chalcogenide materials. The main goal of the study is the identification of species present in the plasma originating from the interaction of laser pulses with solid state material. The generated clusters in both positive and negative ion mode are identified as 10 unary (S p+/- and As m+/- ) and 34 binary (As m S p+/- ) species for As2S3 glass, 2 unary (Se q+/- ) and 26 binary (As m Se q+/- ) species for As2Se3 glass, 7 unary (Te r+/- ) and 23 binary (As m Te r+/- ) species for As2Te3 material. The fragmentation of chalcogenide materials was diminished using some polymers and in this way 45 new, higher mass clusters have been detected. This novel approach opens a new possibility for laser desorption ionization mass spectrometry analysis of chalcogenides as well as other materials. Graphical abstract ᅟ.

4.
Opt Lett ; 42(9): 1660-1663, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28454129

ABSTRACT

AsxTe100-x amorphous thin films were fabricated by a pulsed laser deposition technique with the aim of finding photostable layers in as-deposited but preferably in relaxed (annealed) state. Photostability was studied in terms of the films' stability of refractive index and bandgap under near-bandgap light irradiation. As40Te60 and As50Te50 layers were found to be photostable in both as-deposited as well as relaxed states. Moreover, As50Te50 layers present the lowest surface roughness. These characteristics make pulsed-laser-deposited As50Te50 thin films promising for applications in nonlinear optics.

5.
Opt Express ; 25(6): 7014-7030, 2017 Mar 20.
Article in English | MEDLINE | ID: mdl-28381043

ABSTRACT

A compact amplifier based on chalcogenide Pr3+-doped micro-disk coupled to two ridge waveguides is designed and refined by means of a home-made computer code. The gain G ≈ 7.9 dB is simulated for a Pr3+ concentration of 10 000 ppm, input signal power of -30 dBm at the wavelength 4.7 µm and input pump power of 50 mW at the wavelength 1.55 µm. In the laser behavior, i.e. without input signal, the maximum slope efficiency S = 8.1 × 10-4 is obtained for an input pump power of 2 mW. This value is about six times higher than that simulated for an optimized erbium-doped micro-disk.

6.
Opt Express ; 24(20): 23109-23117, 2016 Oct 03.
Article in English | MEDLINE | ID: mdl-27828376

ABSTRACT

A selenide integrated platform working in the mid-infrared was designed, fabricated and optically characterized at 7.7 µm. Ge-Sb-Se multilayered structures were deposited by RF magnetron sputtering. Using i-line photolithography and fluorine-based reactive ion etching, ridge waveguides were processed as Y-junction, spiral and S-shape waveguides. Single-mode optical propagation at 7.7 µm was observed by optical near-field imaging and optical propagation losses of 2.5dB/cm are measured. Limits of detection of 14.2 ppm and 1.6 ppm for methane and nitrous oxide, respectively, could be potentially measured by using this platform as an evanescent field sensor. Hence, these technological, experimental and theoretical results represent a first step towards the development of an integrated optical sensor operating in the mid-infrared wavelength range.

SELECTION OF CITATIONS
SEARCH DETAIL
...