Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Funct ; 15(9): 4905-4924, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38598180

ABSTRACT

In recent years many women have looked for alternative therapies to address menopause. Hesperidin, phytosterols and curcumin are bioactive compounds that can ameliorate some cardiovascular risk factors associated with menopause, although there are no data concerning the effects of their combined supplementation. We used ovariectomized (OVX) rats, a postmenopausal model with oestrogen deficiency, to evaluate whether supplementation with a multi-ingredient (MI) including hesperidin, phytosterols and curcumin for 57 days would display beneficial effects against fat mass accretion and metabolic disturbances associated with menopause. Twenty OVX rats were orally supplemented with either MI (OVX-MI) or vehicle (OVX). Furthermore, 10 OVX rats orally received the vehicle along with subcutaneous injections of 17ß-oestradiol biweekly (OVX-E2), whereas 10 rats were sham operated and received oral and injected vehicles (control group; SH). MI supplementation partly counteracted the fat mass accretion observed in OVX animals, which was evidenced by decreased total fat mass, adiposity index, the weight of retroperitoneal, inguinal and mesenteric white adipose tissue (MWAT) depots and MWAT adipocyte hypertrophy. These effects were accompanied by a significant decrease in the circulating levels of leptin and the mRNA levels of the fatty acid uptake-related genes Lpl and Cd36 in MWAT. These results were very similar to those observed in OVX-E2 animals. OVX-MI rats also displayed a higher lean body mass, lean/fat mass ratio, adiponectin-to-leptin ratio and insulin sensitivity than their OVX counterparts. Our findings can pave the way for using this MI formulation as an alternative therapy to manage obesity and to improve the cardiometabolic health of menopausal women.


Subject(s)
Adiposity , Curcumin , Dietary Supplements , Hesperidin , Ovariectomy , Phytosterols , Animals , Female , Hesperidin/pharmacology , Hesperidin/administration & dosage , Phytosterols/pharmacology , Phytosterols/administration & dosage , Rats , Curcumin/pharmacology , Curcumin/administration & dosage , Adiposity/drug effects , Leptin/blood , Rats, Sprague-Dawley , Humans , Rats, Wistar
2.
Cell Rep Med ; 4(12): 101341, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38118419

ABSTRACT

The gut microbiota contributes to the pathophysiology of non-alcoholic fatty liver disease (NAFLD). Histidine is a key energy source for the microbiota, scavenging it from the host. Its role in NAFLD is poorly known. Plasma metabolomics, liver transcriptomics, and fecal metagenomics were performed in three human cohorts coupled with hepatocyte, rodent, and Drosophila models. Machine learning analyses identified plasma histidine as being strongly inversely associated with steatosis and linked to a hepatic transcriptomic signature involved in insulin signaling, inflammation, and trace amine-associated receptor 1. Circulating histidine was inversely associated with Proteobacteria and positively with bacteria lacking the histidine utilization (Hut) system. Histidine supplementation improved NAFLD in different animal models (diet-induced NAFLD in mouse and flies, ob/ob mouse, and ovariectomized rats) and reduced de novo lipogenesis. Fecal microbiota transplantation (FMT) from low-histidine donors and mono-colonization of germ-free flies with Enterobacter cloacae increased triglyceride accumulation and reduced histidine content. The interplay among microbiota, histidine catabolism, and NAFLD opens therapeutic opportunities.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Obesity, Morbid , Humans , Mice , Rats , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Histidine/therapeutic use , Gastrointestinal Microbiome/physiology , Diet, High-Fat
3.
J Am Heart Assoc ; 6(9)2017 Sep 25.
Article in English | MEDLINE | ID: mdl-28947563

ABSTRACT

BACKGROUND: Marfan syndrome (MF) leads to aortic root dilatation and a predisposition to aortic dissection, mitral valve prolapse, and primary and secondary cardiomyopathy. Overall, regular physical exercise is recommended for a healthy lifestyle, but dynamic sports are strongly discouraged in MF patients. Nonetheless, evidence supporting this recommendation is lacking. Therefore, we studied the role of long-term dynamic exercise of moderate intensity on the MF cardiovascular phenotype. METHODS AND RESULTS: In a transgenic mouse model of MF (Fbn1C1039G/+), 4-month-old wild-type and MF mice were subjected to training on a treadmill for 5 months; sedentary littermates served as controls for each group. Aortic and cardiac remodeling was assessed by echocardiography and histology. The 4-month-old MF mice showed aortic root dilatation, elastic lamina rupture, and tunica media fibrosis, as well as cardiac hypertrophy, left ventricular fibrosis, and intramyocardial vessel remodeling. Over the 5-month experimental period, aortic root dilation rate was significantly greater in the sedentary MF group, compared with the wild-type group (∆mm, 0.27±0.07 versus 0.13±0.02, respectively). Exercise significantly blunted the aortic root dilation rate in MF mice compared with sedentary MF littermates (∆mm, 0.10±0.04 versus 0.27±0.07, respectively). However, these 2 groups were indistinguishable by aortic root stiffness, tunica media fibrosis, and elastic lamina ruptures. In MF mice, exercise also produced cardiac hypertrophy regression without changes in left ventricular fibrosis. CONCLUSIONS: Our results in a transgenic mouse model of MF indicate that moderate dynamic exercise mitigates the progression of the MF cardiovascular phenotype.


Subject(s)
Aortic Aneurysm/prevention & control , Aortic Dissection/prevention & control , Cardiomyopathies/prevention & control , Exercise Therapy , Marfan Syndrome/therapy , Physical Conditioning, Animal/methods , Aortic Dissection/genetics , Aortic Dissection/pathology , Aortic Dissection/physiopathology , Animals , Aorta/pathology , Aorta/physiopathology , Aortic Aneurysm/genetics , Aortic Aneurysm/pathology , Aortic Aneurysm/physiopathology , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Cardiomyopathies/physiopathology , Dilatation, Pathologic , Disease Models, Animal , Disease Progression , Female , Fibrillin-1/genetics , Fibrosis , Genetic Predisposition to Disease , Male , Marfan Syndrome/genetics , Marfan Syndrome/pathology , Marfan Syndrome/physiopathology , Mice, Inbred C57BL , Mice, Transgenic , Phenotype , Sex Factors , Time Factors , Vascular Remodeling , Ventricular Function, Left , Ventricular Remodeling
SELECTION OF CITATIONS
SEARCH DETAIL
...