Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
Science ; 354(6310): 308-312, 2016 10 21.
Article in English | MEDLINE | ID: mdl-27846561

ABSTRACT

Visualizing chemical reactions as they occur requires atomic spatial and femtosecond temporal resolution. Here, we report imaging of the molecular structure of acetylene (C2H2) 9 femtoseconds after ionization. Using mid-infrared laser-induced electron diffraction (LIED), we obtained snapshots as a proton departs the [C2H2]2+ ion. By introducing an additional laser field, we also demonstrate control over the ultrafast dissociation process and resolve different bond dynamics for molecules oriented parallel versus perpendicular to the LIED field. These measurements are in excellent agreement with a quantum chemical description of field-dressed molecular dynamics.

2.
Opt Lett ; 41(15): 3583-6, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-27472624

ABSTRACT

Many experimental investigations demand synchronized pulses at various wavelengths, ideally with very short pulse duration and high repetition rate. Here we describe a femtosecond multi-color optical parametric chirped pulse amplifier (OPCPA) with simultaneous outputs from the deep-UV to the mid-IR with optical synchronization. The high repetition rate of 160 kHz is well suited to compensate for low interaction probability or low cross section in strong-field interactions. Our source features high peak powers in the tens to hundreds of MW regime with pulse durations below 110 fs, which is ideal for pump-probe experiments of nonlinear and strong-field physics. We demonstrate its utility by strong-field ionization experiments of xenon in the near- to mid-IR.

3.
Nat Commun ; 7: 11922, 2016 06 22.
Article in English | MEDLINE | ID: mdl-27329236

ABSTRACT

The ability to directly follow and time-resolve the rearrangement of the nuclei within molecules is a frontier of science that requires atomic spatial and few-femtosecond temporal resolutions. While laser-induced electron diffraction can meet these requirements, it was recently concluded that molecules with particular orbital symmetries (such as πg) cannot be imaged using purely backscattering electron wave packets without molecular alignment. Here, we demonstrate, in direct contradiction to these findings, that the orientation and shape of molecular orbitals presents no impediment for retrieving molecular structure with adequate sampling of the momentum transfer space. We overcome previous issues by showcasing retrieval of the structure of randomly oriented O2 and C2H2 molecules, with πg and πu symmetries, respectively, and where their ionization probabilities do not maximize along their molecular axes. While this removes a serious bottleneck for laser-induced diffraction imaging, we find unexpectedly strong backscattering contributions from low-Z atoms.

4.
Opt Lett ; 39(24): 6883-6, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25503021

ABSTRACT

We report on the generation of a 2500 nm bandwidth frequency comb at 6.5 µm central wavelength based on critically phase-matched parametric down-conversion in the nonlinear crystal CdSiP(2) (CSP), driven by a compact Er,Tm:Ho fiber laser. The generated ultra-broadband pulses show a transform-limited duration of 2.3 optical cycles and carry up to 150 pJ of energy at a 100 MHz pulse repetition rate. For comparison, the spectrum generated in AgGaS(2) (AGS) spans from 6.2 to 7.4 µm at full-width at half-maximum (FWHM) with a pulse energy of 3 pJ. A full 3D nonlinear wave propagation code is used for optimization of the noncollinear angle, propagation direction, and crystal thickness.

5.
Opt Lett ; 39(20): 5802-5, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25361089

ABSTRACT

The performance of potassium niobate (KNbO3), MgO-doped periodically poled lithium niobate (MgO:PPLN), and potassium titanyl arsenate (KTA) were experimentally compared for broadband mid-wave infrared parametric amplification at a high repetition rate. The seed pulses, with an energy of 6.5 µJ, were amplified using 410 µJ pump energy at 1064 nm to a maximum pulse energy of 28.9 µJ at 3 µm wavelength and at a 160 kHz repetition rate in MgO:PPLN while supporting a transform limited duration of 73 fs. The high average powers of the interacting beams used in this study revealed average power-induced processes that limit the scaling of optical parametric amplification in MgO:PPLN; the pump peak intensity was limited to 3.8 GW/cm² due to nonpermanent beam reshaping, whereas in KNbO3 an absorption-induced temperature gradient in the crystal led to permanent internal distortions in the crystal structure when operated above a pump peak intensity of 14.4 GW/cm².

6.
Sci Rep ; 3: 2675, 2013.
Article in English | MEDLINE | ID: mdl-24043222

ABSTRACT

Strong-field ionisation surprises with richness beyond current understanding despite decade long investigations. Ionisation with mid-IR light has promptly revealed unexpected kinetic energy structures that seem related to unanticipated quantum trajectories of the electrons. We measure first 3D momentum distributions in the deep tunneling regime (γ = 0.3) and observe surprising new electron dynamics of near-zero momentum electrons and extremely low momentum structures, below the eV, despite very high quiver energies of 95 eV. Such level of high-precision measurements at only 1 meV above the threshold, despite 5 orders higher ponderomotive energies, has now become possible with a specifically developed ultrafast mid-IR light source in combination with a reaction microscope, thereby permitting a new level of investigations into mid-IR recollision physics.

7.
Opt Express ; 20(14): 15703-9, 2012 Jul 02.
Article in English | MEDLINE | ID: mdl-22772262

ABSTRACT

We report a tunable, high-energy, single-pass optical parametric generator (OPG) based on the nonlinear material, cadmium silicon phosphide, CdSiP(2). The OPG is pumped by a cavity-dumped, passively mode-locked, diode-pumped Nd:YAG oscillator, providing 25 µJ pulses in 20 ps at 5 Hz. The pump energy is further boosted by a flashlamp-pumped Nd:YAG amplifier to 2.5 mJ. The OPG is temperature tunable over 1263-1286 nm (23 nm) in the signal and 6153-6731 nm (578 nm) in the idler. Using the single-pass OPG configuration, we have generated signal pulse energy as high as 636 µJ at 1283 nm, together with idler pulse energy of 33 µJ at 6234 nm, for 2.1 mJ of input pump pulse energy. The generated signal pulses have durations of 24 ps with a FWHM spectral bandwidth of 10.4 nm at central wavelength of 1276 nm. The corresponding idler spectrum has a FWHM bandwidth of 140 nm centered at 6404 nm.

8.
Nat Commun ; 3: 807, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22549836

ABSTRACT

In supercontinuum generation, various propagation effects combine to produce a dramatic spectral broadening of intense ultrashort optical pulses. With a host of applications, supercontinuum sources are often required to possess a range of properties such as spectral coverage from the ultraviolet across the visible and into the infrared, shot-to-shot repeatability, high spectral energy density and an absence of complicated pulse splitting. Here we present an all-in-one solution, the first supercontinuum in a bulk homogeneous material extending from 450 nm into the mid-infrared. The spectrum spans 3.3 octaves and carries high spectral energy density (2 pJ nm(-1)-10 nJ nm(-1)), and the generation process has high shot-to-shot reproducibility and preserves the carrier-to-envelope phase. Our method, based on filamentation of femtosecond mid-infrared pulses in the anomalous dispersion regime, allows for compact new supercontinuum sources.

SELECTION OF CITATIONS
SEARCH DETAIL
...