Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 7893, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38036510

ABSTRACT

Expansion microscopy (ExM) is a highly effective technique for super-resolution fluorescence microscopy that enables imaging of biological samples beyond the diffraction limit with conventional fluorescence microscopes. Despite the development of several enhanced protocols, ExM has not yet demonstrated the ability to achieve the precision of nanoscopy techniques such as Single Molecule Localization Microscopy (SMLM). Here, to address this limitation, we have developed an iterative ultrastructure expansion microscopy (iU-ExM) approach that achieves SMLM-level resolution. With iU-ExM, it is now possible to visualize the molecular architecture of gold-standard samples, such as the eight-fold symmetry of nuclear pores or the molecular organization of the conoid in Apicomplexa. With its wide-ranging applications, from isolated organelles to cells and tissue, iU-ExM opens new super-resolution avenues for scientists studying biological structures and functions.


Subject(s)
Organelles , Single Molecule Imaging , Microscopy, Fluorescence/methods , Single Molecule Imaging/methods
2.
Phys Med ; 39: 33-38, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28711186

ABSTRACT

PURPOSE: To show the usefulness of topographic 2D megavoltage images (MV2D) for the localization of breast cancer patients treated with TomoDirect (TD), a radiotherapy treatment technique with fixed-angle beams performed on a TomoTherapy system. METHODS: A method was developed to quickly localize breast cancer patients treated with TD by registering the MV2D images produced before a TD treatment with reference images reconstructed from a kilovoltage CT simulation scanner and by using the projection of the beam-eye-view TD treatment field. Dose and image quality measurements were performed to determine the optimal parameters for acquiring MV2D images. A TD treatment was simulated on a chest phantom equipped with a breast attachment. MVCT and MV2D images were performed for 7 different shifted positions of the phantom and registered by 10 different operators with the simulation kilovoltage CT images. RESULTS: Compared to MVCT, MV2D imaging reduces the dose by a factor of up to 45 and the acquisition time by a factor of up to 49. Comparing the registration shift values obtained for the phantom images obtained with MVCT in the coarse mode to those obtained with MV2D, the mean difference is 1.0±1.1mm, -1.1mm±1.1, and -0.1±2.2mm, respectively, in the lateral, longitudinal, and vertical directions. CONCLUSIONS: With dual advantages (very fast imaging and a potentially reduced dose to the heart and contralateral organs), MV2D topographic images may be an attractive alternative to MVCT for the localization of breast cancer patients treated with TomoDirect.


Subject(s)
Breast Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Conformal , Tomography, X-Ray Computed , Breast Neoplasms/diagnostic imaging , Humans , Phantoms, Imaging , Thorax
3.
Article in English | MEDLINE | ID: mdl-18003281

ABSTRACT

This paper presents a quantification method which can be used to quantify the evolution of a brain tumor with time. From two segmented volumes, a Local Distance Volume (LDV) based on Hausdorff Distance is computed to show the true physical local distances between them. In the case of tracking a tumor volume during a therapeutic treatment, local variations can thus be shown by the LDV in particular where the tumor has regressed and where it has grown. This information can help radiologists to adapt the current treatment.


Subject(s)
Artificial Intelligence , Brain Neoplasms/diagnosis , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Pattern Recognition, Automated/methods , Subtraction Technique , Algorithms , Humans , Image Enhancement/methods , Neoplasm Invasiveness , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...