Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ALTEX ; 39(2): 297­314, 2022.
Article in English | MEDLINE | ID: mdl-35064273

ABSTRACT

Complex in vitro models (CIVM) offer the potential to improve pharmaceutical clinical drug attrition due to safety and/ or efficacy concerns. For this technology to have an impact, the establishment of robust characterization and qualifi­cation plans constructed around specific contexts of use (COU) is required. This article covers the output from a workshop between the Food and Drug Administration (FDA) and Innovation and Quality Microphysiological Systems (IQ MPS) Affiliate. The intent of the workshop was to understand how CIVM technologies are currently being applied by pharma­ceutical companies during drug development and are being tested at the FDA through various case studies in order to identify hurdles (real or perceived) to the adoption of microphysiological systems (MPS) technologies, and to address evaluation/qualification pathways for these technologies. Output from the workshop includes the alignment on a working definition of MPS, a detailed description of the eleven CIVM case studies presented at the workshop, in-depth analysis, and key take aways from breakout sessions on ADME (absorption, distribution, metabolism, and excretion), pharmacology, and safety that covered topics such as qualification and performance criteria, species differences and concordance, and how industry can overcome barriers to regulatory submission of CIVM data. In conclusion, IQ MPS Affiliate and FDA scientists were able to build a general consensus on the need for animal CIVMs for preclinical species to better determine species concordance. Furthermore, there was acceptance that CIVM technologies for use in ADME, pharmacology and safety assessment will require qualification, which will vary depending on the specific COU.


Subject(s)
Animal Testing Alternatives , Lab-On-A-Chip Devices , Animals , Drug Evaluation, Preclinical , Drug Industry , Pharmaceutical Preparations/metabolism , United States , United States Food and Drug Administration
2.
Sci Rep ; 11(1): 7432, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33795759

ABSTRACT

Direct at line monitoring of live virus particles in commercial manufacturing of vaccines is challenging due to their small size. Detection of malformed or damaged virions with reduced potency is rate-limited by release potency assays with long turnaround times. Thus, preempting batch failures caused by out of specification potency results is almost impossible. Much needed are in-process tools that can monitor and detect compromised viral particles in live-virus vaccines (LVVs) manufacturing based on changes in their biophysical properties to provide timely measures to rectify process stresses leading to such damage. Using ERVEBO, MSD's Ebola virus vaccine as an example, here we describe a flow virometry assay that can quickly detect damaged virus particles and provide mechanistic insight into process parameters contributing to the damage. Furthermore, we describe a 24-h high throughput infectivity assay that can be used to correlate damaged particles directly to loss in viral infectivity (potency) in-process. Collectively, we provide a set of innovative tools to enable rapid process development, process monitoring, and control strategy implementation in large scale LVV manufacturing.


Subject(s)
Flow Cytometry/methods , Vaccines, Attenuated/standards , Vaccinology/methods , Vaccinology/standards , Viral Vaccines/standards , Animals , Chlorocebus aethiops , Ebola Vaccines/standards , Humans , Temperature , Vaccines, Synthetic/standards , Vero Cells , Virion/ultrastructure
3.
Drug Metab Dispos ; 48(11): 1147-1160, 2020 11.
Article in English | MEDLINE | ID: mdl-32943412

ABSTRACT

Hepatocellular accumulation of bile salts by inhibition of bile salt export pump (BSEP/ABCB11) may result in cholestasis and is one proposed mechanism of drug-induced liver injury (DILI). To understand the relationship between BSEP inhibition and DILI, we evaluated 64 DILI-positive and 57 DILI-negative compounds in BSEP, multidrug resistance protein (MRP) 2, MRP3, and MRP4 vesicular inhibition assays. An empirical cutoff (5 µM) for BSEP inhibition was established based on a relationship between BSEP IC50 values and the calculated maximal unbound concentration at the inlet of the human liver (fu*Iin,max, assay specificity = 98%). Including inhibition of MRP2-4 did not increase DILI predictivity. To further understand the potential to inhibit bile salt transport, a selected subset of 30 compounds were tested for inhibition of taurocholate (TCA) transport in a long-term human hepatocyte micropatterned co-culture (MPCC) system. The resulting IC50 for TCA in vitro biliary clearance and biliary excretion index (BEI) in MPCCs were compared with the compound's fu*Iin,max to assess potential risk for bile salt transport perturbation. The data show high specificity (89%). Nine out of 15 compounds showed an IC50 value in the BSEP vesicular assay of <5µM, but the BEI IC50 was more than 10-fold the fu*Iin,max, suggesting that inhibition of BSEP in vivo is unlikely. The data indicate that although BSEP inhibition measured in membrane vesicles correlates with DILI risk, that measurement of this assay activity is insufficient. A two-tiered strategy incorporating MPCCs is presented to reduce BSEP inhibition potential and improve DILI risk. SIGNIFICANCE STATEMENT: This work describes a two-tiered in vitro approach to de-risk compounds for potential bile salt export pump inhibition liabilities in drug discovery utilizing membrane vesicles and a long-term human hepatocyte micropatterned co-culture system. Cutoffs to maximize specificity were established based on in vitro data from a set of 121 DILI-positive and -negative compounds and associated calculated maximal unbound concentration at the inlet of the human liver based on the highest clinical dose.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 11/antagonists & inhibitors , Chemical and Drug Induced Liver Injury/prevention & control , Drug Discovery/methods , Taurocholic Acid/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism , Coculture Techniques , Drug Evaluation, Preclinical/methods , Hepatocytes , Humans , Inhibitory Concentration 50 , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Multidrug Resistance-Associated Proteins/metabolism
4.
Lab Chip ; 20(2): 215-225, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31799979

ABSTRACT

The liver is critical to consider during drug development because of its central role in the handling of xenobiotics, a process which often leads to localized and/or downstream tissue injury. Our ability to predict human clinical safety outcomes with animal testing is limited due to species differences in drug metabolism and disposition, while traditional human in vitro liver models often lack the necessary in vivo physiological fidelity. To address this, increasing numbers of liver microphysiological systems (MPS) are being developed, however the inconsistency in their optimization and characterization often leads to models that do not possess critical levels of baseline performance that is required for many pharmaceutical industry applications. Herein we provide a guidance on best approaches to benchmark liver MPS based on 3 stages of characterization that includes key performance metrics and a 20 compound safety test set. Additionally, we give an overview of frequently used liver injury safety assays, describe the ideal MPS model, and provide a perspective on currently best suited MPS contexts of use. This pharmaceutical industry guidance has been written to help MPS developers and end users identify what could be the most valuable models for safety risk assessment.


Subject(s)
Liver/metabolism , Pharmaceutical Preparations/metabolism , Animals , Drug Evaluation, Preclinical , Drug Industry , Humans , Lab-On-A-Chip Devices , Liver/chemistry , Pharmaceutical Preparations/chemistry , Risk Assessment
5.
Cancer Cell ; 29(4): 548-562, 2016 Apr 11.
Article in English | MEDLINE | ID: mdl-27052953

ABSTRACT

Although glycolysis is substantially elevated in many tumors, therapeutic targeting of glycolysis in cancer patients has not yet been successful, potentially reflecting the metabolic plasticity of tumor cells. In various cancer cells exposed to a continuous glycolytic block, we identified a recurrent reprogramming mechanism involving sustained mTORC1 signaling that underlies escape from glycolytic addiction. Active mTORC1 directs increased glucose flux via the pentose phosphate pathway back into glycolysis, thereby circumventing a glycolysis block and ensuring adequate ATP and biomass production. Combined inhibition of glycolysis and mTORC1 signaling disrupted metabolic reprogramming in tumor cells and inhibited their growth in vitro and in vivo. These findings reveal novel combinatorial therapeutic strategies to realize the potential benefit from targeting the Warburg effect.


Subject(s)
Glycolysis , Molecular Targeted Therapy , Multiprotein Complexes/physiology , Neoplasm Proteins/physiology , Neoplasms/metabolism , TOR Serine-Threonine Kinases/physiology , Adenosine Triphosphate/biosynthesis , Animals , Carcinoma/pathology , Cell Line, Tumor , Citric Acid Cycle , Combined Modality Therapy , Cytokines/antagonists & inhibitors , Cytokines/genetics , Deoxyglucose/pharmacology , Deoxyglucose/therapeutic use , Drug Resistance, Neoplasm , Drug Synergism , Energy Metabolism/drug effects , Everolimus/pharmacology , Everolimus/therapeutic use , Female , Glucose-6-Phosphate Isomerase/antagonists & inhibitors , Glucose-6-Phosphate Isomerase/genetics , Glutaminase/antagonists & inhibitors , Glutaminase/physiology , Glutamine/metabolism , Glycolysis/drug effects , Hep G2 Cells , Humans , Mechanistic Target of Rapamycin Complex 1 , Metabolomics , Mice , Mice, Nude , Multiprotein Complexes/antagonists & inhibitors , Neoplasm Proteins/antagonists & inhibitors , Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Pentose Phosphate Pathway/drug effects , Pentose Phosphate Pathway/physiology , RNA Interference , RNA, Small Interfering/therapeutic use , Ribosomal Protein S6 Kinases, 70-kDa/antagonists & inhibitors , Ribosomal Protein S6 Kinases, 70-kDa/physiology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Tumor Stem Cell Assay , Xenograft Model Antitumor Assays
6.
J Pharmacol Exp Ther ; 343(1): 225-32, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22743576

ABSTRACT

Glucocorticoids are standard of care for many inflammatory conditions, but chronic use is associated with a broad array of side effects. This has led to a search for dissociative glucocorticoids--drugs able to retain or improve efficacy associated with transrepression [nuclear factor-κB (NF-κB) inhibition] but with the loss of side effects associated with transactivation (receptor-mediated transcriptional activation through glucocorticoid response element gene promoter elements). We investigated a glucocorticoid derivative with a Δ-9,11 modification as a dissociative steroid. The Δ-9,11 analog showed potent inhibition of tumor necrosis factor-α-induced NF-κB signaling in cell reporter assays, and this transrepression activity was blocked by 17ß-hydroxy-11ß-[4-dimethylamino phenyl]-17α-[1-propynyl]estra-4,9-dien-3-one (RU-486), showing the requirement for the glucocorticoid receptor (GR). The Δ-9,11 analog induced the nuclear translocation of GR but showed the loss of transactivation as assayed by GR-luciferase constructs as well as mRNA profiles of treated cells. The Δ-9,11 analog was tested for efficacy and side effects in two mouse models of muscular dystrophy: mdx (dystrophin deficiency), and SJL (dysferlin deficiency). Daily oral delivery of the Δ-9,11 analog showed a reduction of muscle inflammation and improvements in multiple muscle function assays yet no reductions in body weight or spleen size, suggesting the loss of key side effects. Our data demonstrate that a Δ-9,11 analog dissociates the GR-mediated transcriptional activities from anti-inflammatory activities. Accordingly, Δ-9,11 analogs may hold promise as a source of safer therapeutic agents for chronic inflammatory disorders.


Subject(s)
Dronabinol/analogs & derivatives , Glucocorticoids/adverse effects , Glucocorticoids/pharmacology , NF-kappa B/antagonists & inhibitors , Response Elements/drug effects , Animals , Dose-Response Relationship, Drug , Dronabinol/chemistry , Dronabinol/pharmacology , Female , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Mice, Knockout , NF-kappa B/metabolism , Response Elements/physiology , Spleen/drug effects , Spleen/metabolism , Treatment Outcome
7.
EJNMMI Res ; 2(1): 35, 2012 Jun 27.
Article in English | MEDLINE | ID: mdl-22738240

ABSTRACT

BACKGROUND: We recently showed improved between-subject variability in our [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) experiments using a Michaelis-Menten transport model to calculate the metabolic tumor glucose uptake rate extrapolated to the hypothetical condition of glucose saturation: MRglucmax=Ki*(KM+[glc]), where Ki is the image-derived FDG uptake rate constant, KM is the half-saturation Michaelis constant, and [glc] is the blood glucose concentration. Compared to measurements of Ki alone, or calculations of the scan-time metabolic glucose uptake rate (MRgluc = Ki * [glc]) or the glucose-normalized uptake rate (MRgluc = Ki*[glc]/(100 mg/dL), we suggested that MRglucmax could offer increased statistical power in treatment studies; here, we confirm this in theory and practice. METHODS: We compared Ki, MRgluc (both with and without glucose normalization), and MRglucmax as FDG-PET measures of treatment-induced changes in tumor glucose uptake independent of any systemic changes in blood glucose caused either by natural variation or by side effects of drug action. Data from three xenograft models with independent evidence of altered tumor cell glucose uptake were studied and generalized with statistical simulations and mathematical derivations. To obtain representative simulation parameters, we studied the distributions of Ki from FDG-PET scans and blood [glucose] values in 66 cohorts of mice (665 individual mice). Treatment effects were simulated by varying MRglucmax and back-calculating the mean Ki under the Michaelis-Menten model with KM = 130 mg/dL. This was repeated to represent cases of low, average, and high variability in Ki (at a given glucose level) observed among the 66 PET cohorts. RESULTS: There was excellent agreement between derivations, simulations, and experiments. Even modestly different (20%) blood glucose levels caused Ki and especially MRgluc to become unreliable through false positive results while MRglucmax remained unbiased. The greatest benefit occurred when Ki measurements (at a given glucose level) had low variability. Even when the power benefit was negligible, the use of MRglucmax carried no statistical penalty. Congruent with theory and simulations, MRglucmax showed in our experiments an average 21% statistical power improvement with respect to MRgluc and 10% with respect to Ki (approximately 20% savings in sample size). The results were robust in the face of imprecise blood glucose measurements and KM values. CONCLUSIONS: When evaluating the direct effects of treatment on tumor tissue with FDG-PET, employing a Michaelis-Menten glucose correction factor gives the most statistically powerful results. The well-known alternative 'correction', multiplying Ki by blood glucose (or normalized blood glucose), appears to be counter-productive in this setting and should be avoided.

8.
EJNMMI Res ; 2(1): 22, 2012 May 31.
Article in English | MEDLINE | ID: mdl-22651703

ABSTRACT

BACKGROUND: The BRAF inhibitor, vemurafenib, has recently been approved for the treatment of metastatic melanoma in patients harboring BRAFV600 mutations. Currently, dual BRAF and MEK inhibition are ongoing in clinical trials with the goal of overcoming the acquired resistance that has unfortunately developed in some vemurafenib patients. FDG-PET measures of metabolic activity are increasingly employed as a pharmacodynamic biomarker for guiding single-agent or combination therapies by gauging initial drug response and monitoring disease progression. However, since tumors are inherently heterogeneous, investigating the effects of BRAF and MEK inhibition on FDG uptake in a panel of different melanomas could help interpret imaging outcomes. METHODS: 18 F-FDG uptake was measured in vitro in cells with wild-type and mutant (V600) BRAF, and in melanoma cells with an acquired resistance to vemurafenib. We treated the cells with vemurafenib alone or in combination with MEK inhibitor GDC-0973. PET imaging was used in mice to measure FDG uptake in A375 melanoma xenografts and in A375 R1, a vemurafenib-resistant derivative. Histological and biochemical studies of glucose transporters, the MAPK and glycolytic pathways were also undertaken. RESULTS: We demonstrate that vemurafenib is equally effective at reducing FDG uptake in cell lines harboring either heterozygous or homozygous BRAFV600 but ineffective in cells with acquired resistance or having WT BRAF status. However, combination with GDC-0973 results in a highly significant increase of efficacy and inhibition of FDG uptake across all twenty lines. Drug-induced changes in FDG uptake were associated with altered levels of membrane GLUT-1, and cell lines harboring RAS mutations displayed enhanced FDG uptake upon exposure to vemurafenib. Interestingly, we found that vemurafenib treatment in mice bearing drug-resistant A375 xenografts also induced increased FDG tumor uptake, accompanied by increases in Hif-1α, Sp1 and Ksr protein levels. Vemurafenib and GDC-0973 combination efficacy was associated with decreased levels of hexokinase II, c-RAF, Ksr and p-MEK protein. CONCLUSIONS: We have demonstrated that 18 F-FDG-PET imaging reflects vemurafenib and GDC-0973 action across a wide range of metastatic melanomas. A delayed post-treatment increase in tumor FDG uptake should be considered carefully as it may well be an indication of acquired drug resistance. TRIAL REGISTRATION: ClinicalTrials.gov NCT01271803.

9.
Am J Pathol ; 179(1): 12-22, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21703390

ABSTRACT

The identification of the Duchenne muscular dystrophy gene and protein in the late 1980s led to high hopes of rapid translation to molecular therapeutics. These hopes were fueled by early reports of delivering new functional genes to dystrophic muscle in mouse models using gene therapy and stem cell transplantation. However, significant barriers have thwarted translation of these approaches to true therapies, including insufficient therapeutic material (eg, cells and viral vectors), challenges in systemic delivery, and immunological hurdles. An alternative approach is to repair the patient's own gene. Two innovative small-molecule approaches have emerged as front-line molecular therapeutics: exon skipping and stop codon read through. Both approaches are in human clinical trials and aim to coax dystrophin protein production from otherwise inactive mutant genes. In the clinically severe dog model of Duchenne muscular dystrophy, the exon-skipping approach recently improved multiple functional outcomes. We discuss the status of these two methods aimed at inducing de novo dystrophin production from mutant genes and review implications for other disorders.


Subject(s)
Codon, Terminator/genetics , Dystrophin/metabolism , Exons/genetics , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/therapy , Mutant Proteins/metabolism , Animals , Dogs , Dystrophin/genetics , Humans , Mice , Muscle, Skeletal/cytology , Muscular Dystrophy, Duchenne/genetics , Mutant Proteins/genetics
10.
Mol Imaging Biol ; 13(3): 462-470, 2011 Jun.
Article in English | MEDLINE | ID: mdl-20661652

ABSTRACT

PURPOSE: To develop a reliable live-animal imaging method for monitoring muscle pathology in mouse models of myopathy. PROCEDURES: A caged near-infrared Cathepsin B (CTSB) substrate, ProSense 680, is evaluated in the dystrophin deficient mdx mice, a genetic homologue of Duchenne muscular dystrophy via optical imaging. RESULTS: We show high levels of infrared signal in dystrophic muscle relative to healthy muscle at 24 h post-injection. Imaging for CTSB presence revealed localization to inflammatory infiltrates and regenerating muscle fibers. A time series myotoxin-induced muscle injury experiment showed that CTSB activity and its mRNA levels peaked at the interface between inflammation and myoblast fusion stage of recovery. Prednisone treatment in mdx mice resulted in decreased CTSB activity and increased grip strength in forelimbs and hindlimbs. CONCLUSIONS: Optical imaging of CTSB activity is an ideal method to sensitively monitor inflammation, regeneration, and response to therapy in myopathic skeletal muscle.


Subject(s)
Cathepsin B/metabolism , Diagnostic Imaging/methods , Infrared Rays , Muscles/pathology , Optical Phenomena , Animals , Cathepsin B/genetics , Hindlimb/drug effects , Hindlimb/pathology , Humans , Injections, Intraperitoneal , Mice , Mice, Inbred mdx , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscles/drug effects , Muscles/enzymology , Muscular Dystrophy, Animal/pathology , Muscular Dystrophy, Duchenne/pathology , Myoblasts/drug effects , Myoblasts/metabolism , Myoblasts/pathology , Prednisone/pharmacology , Protein Transport/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Regeneration/drug effects , Substrate Specificity/drug effects , Toxins, Biological/toxicity , Transcription, Genetic/drug effects
11.
Int Immunopharmacol ; 9(10): 1209-14, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19596085

ABSTRACT

Specific therapies are not available for inflammatory muscle diseases. We and others have shown that the pro-inflammatory NF-kappaB pathway is highly activated in these conditions. Since NF-kappaB is an important therapeutic target, we decided to utilize an in vitro screening assay to identify potential inhibitors that block TNF-alpha induced NF-kappaB activation in a C2C12 muscle line stably expressing an NF-kappaB luciferase reporter gene. Upon evaluation of multiple anti-inflammatory agents in undifferentiated myoblasts as well as differentiated myotubes , we found different levels of inhibition depending on the state of differentiation. Interestingly, we found that some drugs that are known to inhibit NF-kappaB in immune cells were not effective in muscle cells. Drug toxicity was assessed for using an MTT cell viability assay, and the validity of the luciferase assay was verified by immunostaining for NF-kappaB nuclear translocation in myoblasts. In conclusion, we have determined the optimal assay conditions for detecting potentially valuable NF-kappaB inhibitors for the first time in a muscle cell line that may have significant therapeutic potential for inflammatory muscle diseases.


Subject(s)
Enzyme Inhibitors/pharmacology , Muscle, Skeletal/drug effects , Myositis/drug therapy , NF-kappa B/antagonists & inhibitors , Animals , Cell Line , Drug Design , Drug Evaluation, Preclinical , Mice , Muscle, Skeletal/immunology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Myositis/immunology , Myositis/pathology , Reproducibility of Results , Signal Transduction/drug effects , Signal Transduction/immunology , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism
12.
Brain Res ; 1077(1): 16-23, 2006 Mar 10.
Article in English | MEDLINE | ID: mdl-16487495

ABSTRACT

PACAP is a peptide with neuroprotective activity, which induces adenylate cyclase and protein kinase A (PKA) activity. PACAP has also been shown to induce neurite outgrowth in PC12 cells and dorsal root ganglion (DRG) neurons. Here, we report that exogenous PACAP38 promotes neurite outgrowth in the F11 neuroblastoma/dorsal DRG hybrid cell line. Using an automated microscopy system, we show that PACAP38 induces a 170-fold increase in neurite length, with an EC50 of 3.1 nM, compared to 3.7 microM for forskolin and 143.4 microM for dibutyril cyclic AMP (dbcAMP). PACAP38 induced a 4-fold increase in the level of phosphorylation of cAMP-responsive element binding protein (CREB) in F11 cells with an EC50 of 130 pM. In contrast a peptide related to PACAP, vasoactive intestinal peptide (VIP) failed to induce CREB phosphorylation or neurite outgrowth in F11 cells. Addition of the nonselective phosphodiesterase inhibitor, isobutyl methylxanthine (IBMX) increased the potency of PACAP at inducing neurite outgrowth by ten-fold. The PKA inhibitor, H89, was a potent inhibitor of PACAP38-induced neurite outgrowth. The delta-opioid receptor agonist, SNC 80, did not inhibit PACAP-induced neurogenesis even though it did reduce CREB phosphorylation. In contrast to previous studies in PC12 cells, PACAP38 failed to show MEK1 activation in F11 cells. PACAP is upregulated in DRG neurons as a result of injury, and F11 cells provide an easily accessible in vitro model for understanding mechanisms underlying PACAP differentiation and neurogenesis.


Subject(s)
Cell Differentiation/physiology , Cyclic AMP-Dependent Protein Kinases/metabolism , Neurites/physiology , Pituitary Adenylate Cyclase-Activating Polypeptide/physiology , Signal Transduction/physiology , 1-Methyl-3-isobutylxanthine , Animals , Cell Differentiation/drug effects , Cell Line , Cyclic AMP Response Element-Binding Protein/metabolism , Ganglia, Spinal/cytology , Immunohistochemistry , Mice , Neurites/drug effects , Neurons/cytology , Neurons/drug effects , Neurons/physiology , Phosphodiesterase Inhibitors/pharmacology , Phosphorylation , Rats , Second Messenger Systems/drug effects , Second Messenger Systems/physiology , Signal Transduction/drug effects , Vasoactive Intestinal Peptide/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...