Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Orthod ; 46(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38086543

ABSTRACT

OBJECTIVES: Orthodontic retainers should restrict physiological tooth mobility as little as possible. While this has been investigated for multistranded retainers, there is a lack of data for novel CAD/CAM retainers. To address this, the present study compared the restriction of physiological tooth mobility in multistranded retainers and different CAD/CAM retainers. MATERIAL/METHODS: One group of multistranded (n = 8) and five groups of CAD/CAM retainers (nickel-titanium (NiTi), titanium grade 5 (Ti5), polyetheretherketone (PEEK), zirconia (ZrO2), and cobalt-chromium (CoCr); each n = 8) bonded from canine to canine were investigated for their influence on vertical and horizontal tooth mobility using an in vitro model of a lower arch in a universal testing machine. Load-deflection curves were determined and statistically analysed. RESULTS: All retainers restricted tooth mobility to varying extents. The retainers had less of an influence on vertical tooth mobility, with less of a difference between retainers (14%-38% restriction). In contrast, significant (P ≤ 0.05) differences were observed between retainers in the restriction of horizontal tooth mobility. ZrO2 retainers had the greatest impact, restricting horizontal tooth mobility by 82% (68 ± 20 µm/100N), followed by CoCr (75%, 94 ± 26 µm/100N) and PEEK (73%, 103 ± 28 µm/100N) CAD/CAM retainers, which had comparable effects on horizontal tooth mobility. Ti5 (54%, 175 ± 66 µm/100N) and NiTi (34%, 248 ± 119 µm/100N) CAD/CAM retainers had less of an influence on horizontal tooth mobility, and were comparable to multistranded retainers (44%, 211 ± 77 µm/100N). LIMITATIONS: This is an in vitro study, so clinical studies are needed to draw clinical conclusions. CONCLUSIONS: Multistranded and CAD/CAM retainers have different effects on tooth mobility in vitro. These effects should be further explored in future in vivo studies.


Subject(s)
Alloys , Benzophenones , Nickel , Polymers , Titanium , Tooth Mobility , Humans , Zirconium , Computer-Aided Design
2.
J Orofac Orthop ; 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37378840

ABSTRACT

PURPOSE: To compare failure rates and maximum load capacity (Fmax) of six different computer-aided design/computer-aided manufacturing (CAD/CAM) retainers with those of the hand-bent five-stranded stainless steel twistflex retainer. MATERIALS AND METHODS: Six groups (n = 8 per group) of commercially available CAD/CAM retainers (cobalt-chromium [CoCr], titanium grade 5 [Ti5], nickel-titanium [NiTi], zirconia [ZrO2], polyetheretherketone [PEEK], and gold) and twistflex retainers were tested for long-term sufficiency and for Fmax using a self-developed in vitro model. All retainer models underwent a simulated ageing process of about 15 years (1,200,000 chewing cycles with a force magnitude of 65 N at 45° followed by storage in water at 37 °C for 30 days). If retainers did not debond or break during ageing, their Fmax was determined in a universal testing machine. Data were statistically analysed using Kruskal-Wallis and Mann-Whitney U­tests. RESULTS: Twistflex retainers did not fail (0/8) during ageing and had the highest Fmax (445 N ± 51 N). Ti5 retainers were the only CAD/CAM retainers that also did not fail (0/8) and had similar Fmax values (374 N ± 62 N). All other CAD/CAM retainers had higher failure rates during ageing and significantly lower Fmax values (p < 0.01; ZrO2: 1/8, 168 N ± 52 N; gold: 3/8, 130 N ± 52 N; NiTi: 5/8, 162 N ± 132 N; CoCr: 6/8, 122 N ± 100 N; PEEK: 8/8, 65 ± 0 N). Failure was due to breakage in the NiTi retainers and debonding in all other retainers. CONCLUSION: Twistflex retainers remain the gold standard regarding biomechanical properties and long-term sufficiency. Of the CAD/CAM retainers tested, Ti5 retainers seem to be the most suitable alternative. In contrast, all other CAD/CAM retainers investigated in this study showed high failure rates and had significantly lower Fmax values.

3.
J Funct Biomater ; 14(6)2023 May 24.
Article in English | MEDLINE | ID: mdl-37367253

ABSTRACT

(1) Background: Novel high-performance polymers for medical 3D printing enable in-office manufacturing of fully customized brackets. Previous studies have investigated clinically relevant parameters such as manufacturing precision, torque transmission, and fracture stability. The aim of this study is to evaluate different design options of the bracket base concerning the adhesive bond between the bracket and tooth, measured as the shear bond strength (SBS) and maximum force (Fmax) according to DIN 13990. (2) Methods: Three different designs for printed bracket bases were compared with a conventional metal bracket (C). The following configurations were chosen for the base design: Matching of the base to the anatomy of the tooth surface, size of the cross-sectional area corresponding to the control group (C), and a micro- (A) and macro- (B) retentive design of the base surface. In addition, a group with a micro-retentive base (D) matched to the tooth surface and an increased size was studied. The groups were analyzed for SBS, Fmax, and adhesive remnant index (ARI). The Kruskal-Wallis test with a post hoc test (Dunn-Bonferroni) and Mann-Whitney U test were used for statistical analysis (significance level: p < 0.05). (3) Results: The values for SBS and Fmax were highest in C (SBS: 12.0 ± 3.8 MPa; Fmax: 115.7 ± 36.6 N). For the printed brackets, there were significant differences between A and B (A: SBS 8.8 ± 2.3 MPa, Fmax 84.7 ± 21.8 N; B: SBS 12.0 ± 2.1 MPa, Fmax 106.5 ± 20.7 N). Fmax was significantly different for A and D (D: Fmax 118.5 ± 22.8 N). The ARI score was highest for A and lowest for C. (4) Conclusions: This study shows that conventional brackets form a more stable bond with the tooth than the 3D-printed brackets. However, for successful clinical use, the shear bond strength of the printed brackets can be increased with a macro-retentive design and/or enlargement of the base.

4.
Bioengineering (Basel) ; 10(5)2023 May 19.
Article in English | MEDLINE | ID: mdl-37237686

ABSTRACT

OBJECTIVE: Intermaxillary elastics, anchored skeletally, represent a promising concept for treatment in adolescent patients with skeletal Class III anomalies. A challenge in existing concepts is the survival rate of the miniscrews in the mandible or the invasiveness of the bone anchors. A novel concept, the mandibular interradicular anchor (MIRA) appliance, for improving skeletal anchorage in the mandible, will be presented and discussed. CLINICAL CASE: In a ten-year-old female patient with a moderate skeletal Class III, the novel MIRA concept, combined with maxillary protraction, was applied. This involved the use of a CAD/CAM-fabricated indirect skeletal anchorage appliance in the mandible, with interradicularly placed miniscrews distal to each canine (MIRA appliance), and a hybrid hyrax in the maxilla with paramedian placed miniscrews. The modified alt-RAMEC protocol involved an intermittent weekly activation for five weeks. Class III elastics were worn for a period of seven months. This was followed by alignment with a multi-bracket appliance. DISCUSSION: The cephalometric analysis before and after therapy shows an improvement of the Wits value (+3.8 mm), SNA (+5°), and ANB (+3°). Dentally, a transversal postdevelopment in the maxilla (+4 mm) and a labial tip of the maxillary (+3.4°) and mandibular anterior teeth (+4.7°) with gap formation is observed. CONCLUSION: The MIRA appliance represents a less invasive and esthetic alternative to the existing concepts, especially with two miniscrews in the mandible per side. In addition, MIRA can be selected for complex orthodontic tasks, such as molar uprighting and mesialization.

5.
J Orofac Orthop ; 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36862188

ABSTRACT

PURPOSE: To investigate a novel in-office three-dimensionally (3D) printed polymer bracket regarding slot precision and torque transmission. METHODS: Based on a 0.022″ bracket system, stereolithography was used to manufacture brackets (N = 30) from a high-performance polymer that met Medical Device Regulation (MDR) IIa requirements. Conventional metal and ceramic brackets were used for comparison. Slot precision was determined using calibrated plug gages. Torque transmission was measured after artificial aging. Palatal and vestibular crown torques were measured from 0 to 20° using titanium-molybdenum (T) and stainless steel (S) wires (0.019â€³â€¯× 0.025″) in a biomechanical experimental setup. The Kruskal-Wallis test with post hoc test (Dunn-Bonferroni) was used for statistical analyses (significance level p < 0.05). RESULTS: The slot sizes of all three bracket groups were within the tolerance range according to DIN 13996 (ceramic [C]: 0.581 ± 0.003 mm; metal [M]: 0.6 ± 0.005 mm; polymer [P]: 0.581 ± 0.010 mm). The maximum torque values of all bracket-arch combinations were above the clinically relevant range of 5-20 Nmm (PS: 30 ± 8.6 Nmm; PT: 27.8 ± 14.2 Nmm; CS: 24 ± 5.6 Nmm; CT: 19.9 ± 3.8 Nmm; MS: 21.4 ± 6.7 Nmm; MT: 16.7 ± 4.6 Nmm). CONCLUSIONS: The novel, in-office manufactured polymer bracket showed comparable results to established bracket materials regarding slot precision and torque transmission. Given its high individualization possibilities as well as enabling an entire in-house supply chain, the novel polymer brackets bear high potential of future usage for orthodontic appliances.

6.
Quintessence Int ; 53(5): 394-402, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35119240

ABSTRACT

OBJECTIVE: The aim of this case series was to test various personalized, CAD/CAM-manufactured orthodontic extrusion appliances. The appliances were characterized by high rigidity and manufacturing precision. In addition, the orthodontic force vector could be precisely and three-dimensionally planned. METHOD AND MATERIALS: After a comprehensive diagnosis of three patients with deep fractured teeth by an interdisciplinary team, each patient's personalized extrusion protocol was determined (slow or rapid extrusion). Based on an intraoral scan, the personalized extrusion appliances were then digitally planned and manufactured using selective laser melting. The force vector was also precisely planned during this process. The appliances were inserted, and the force on the teeth to be extruded was precisely applied in accordance with the extrusion protocol. After extrusion, the teeth were retained and, if necessary, permanently restored. RESULTS: The target teeth of all three patients were successfully extruded. Furthermore, good cleanability and high wearing comfort of the appliances were maintained throughout treatment, as was the precise application of force. CONCLUSION: The effectiveness of the tested digital workflow for precise and simplified orthodontic extrusion was clinically proven. The workflow guaranteed the following throughout treatment: precise planning and application of the force system; improved periodontal hygiene; and improved wearing comfort of the appliance, without affecting the patient's existing occlusion.


Subject(s)
Orthodontic Extrusion , Tooth Fractures , Computer-Aided Design , Humans , Orthodontic Appliances
SELECTION OF CITATIONS
SEARCH DETAIL
...