Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 8(12)2023 06 22.
Article in English | MEDLINE | ID: mdl-37345660

ABSTRACT

Innate and adaptive immune cells modulate the severity of autosomal dominant polycystic kidney disease (ADPKD), a common kidney disease with inadequate treatment options. ADPKD has parallels with cancer, in which immune checkpoint inhibitors have been shown to reactivate CD8+ T cells and slow tumor growth. We have previously shown that in PKD, CD8+ T cell loss worsens disease. This study used orthologous early-onset and adult-onset ADPKD models (Pkd1 p.R3277C) to evaluate the role of immune checkpoints in PKD. Flow cytometry of kidney cells showed increased levels of programmed cell death protein 1 (PD-1)/cytotoxic T lymphocyte associated protein 4 (CTLA-4) on T cells and programmed cell death ligand 1 (PD-L1)/CD80 on macrophages and epithelial cells in Pkd1RC/RC mice versus WT, paralleling disease severity. PD-L1/CD80 was also upregulated in ADPKD human cells and patient kidney tissue versus controls. Genetic PD-L1 loss or treatment with an anti-PD-1 antibody did not impact PKD severity in early-onset or adult-onset ADPKD models. However, treatment with anti-PD-1 plus anti-CTLA-4, blocking 2 immune checkpoints, improved PKD outcomes in adult-onset ADPKD mice; neither monotherapy altered PKD severity. Combination therapy resulted in increased kidney CD8+ T cell numbers/activation and decreased kidney regulatory T cell numbers correlative with PKD severity. Together, our data suggest that immune checkpoint activation is an important feature of and potential novel therapeutic target in ADPKD.


Subject(s)
Polycystic Kidney Diseases , Polycystic Kidney, Autosomal Dominant , Adult , Humans , Animals , Mice , B7-H1 Antigen , Kidney , Combined Modality Therapy , B7-1 Antigen
2.
J Lipid Res ; 59(2): 380-390, 2018 02.
Article in English | MEDLINE | ID: mdl-29229740

ABSTRACT

The group IVA calcium-dependent cytosolic phospholipase A2 (cPLA2α) enzyme directs a complex "eicosanoid storm" that accompanies the tissue response to injury. cPLA2α and its downstream eicosanoid mediators are also implicated in the pathogenesis of fibrosis in many organs, including the kidney. We aimed to determine the role of cPLA2α in bone marrow-derived cells in a murine model of renal fibrosis, unilateral ureteral obstruction (UUO). WT C57BL/6J mice were irradiated and engrafted with donor bone marrow from either WT mice [WT-bone marrow transplant (BMT)] or mice deficient in cPLA2α (KO-BMT). After full engraftment, mice underwent UUO and kidneys were collected 3, 7, and 14 days after injury. Using picrosirius red, collagen-3, and smooth muscle α actin staining, we determined that renal fibrosis was significantly attenuated in KO-BMT animals as compared with WT-BMT animals. Lipidomic analysis of homogenized kidneys demonstrated a time-dependent upregulation of pro-inflammatory eicosanoids after UUO; KO-BMT animals had lower levels of many of these eicosanoids. KO-BMT animals also had fewer infiltrating pro-inflammatory CD45+CD11b+Ly6Chi macrophages and reduced message levels of pro-inflammatory cytokines. Our results indicate that cPLA2α and/or its downstream mediators, produced by bone marrow-derived cells, play a major role in eicosanoid production after renal injury and in renal fibrinogenesis.


Subject(s)
Bone Marrow/metabolism , Group IV Phospholipases A2/metabolism , Kidney Diseases/metabolism , Ureteral Obstruction/metabolism , Animals , Fibrosis/metabolism , Fibrosis/pathology , Group IV Phospholipases A2/deficiency , Group IV Phospholipases A2/genetics , Kidney Diseases/pathology , Mice , Mice, Inbred C57BL , Ureteral Obstruction/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...