Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Pathol Inform ; 15: 100352, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38186745

ABSTRACT

As our understanding of the tumor microenvironment grows, the pathology field is increasingly utilizing multianalyte diagnostic assays to understand important characteristics of tumor growth. In clinical settings, brightfield chromogenic assays represent the gold-standard and have developed significant trust as the first-line diagnostic method. However, conventional brightfield tests have been limited to low-order assays that are visually interrogated. We have developed a hybrid method of brightfield chromogenic multiplexing that overcomes these limitations and enables high-order multiplex assays. However, how compatible high-order brightfield multiplexed images are with advanced analytical algorithms has not been extensively evaluated. In the present study, we address this gap by developing a novel 6-marker prostate cancer assay that targets diverse aspects of the tumor microenvironment such as prostate-specific biomarkers (PSMA and p504s), immune biomarkers (CD8 and PD-L1), a prognostic biomarker (Ki-67), as well as an adjunctive diagnostic biomarker (basal cell cocktail) and apply the assay to 143 differentially graded adenocarcinoma prostate tissues. The tissues were then imaged on our spectroscopic multiplexing imaging platform and mined for proteomic and spatial features that were correlated with cancer presence and disease grade. Extracted features were used to train a UMAP model that differentiated healthy from cancerous tissue with an accuracy of 89% and identified clusters of cells based on cancer grade. For spatial analysis, cell-to-cell distances were calculated for all biomarkers and differences between healthy and adenocarcinoma tissues were studied. We report that p504s positive cells were at least 2× closer to cells expressing PD-L1, CD8, Ki-67, and basal cell in adenocarcinoma tissues relative to the healthy control tissues. These findings offer a powerful insight to understand the fingerprint of the prostate tumor microenvironment and indicate that high-order chromogenic multiplexing is compatible with digital analysis. Thus, the presented chromogenic multiplexing system combines the clinical applicability of brightfield assays with the emerging diagnostic power of high-order multiplexing in a digital pathology friendly format that is well-suited for translational studies to better understand mechanisms of tumor development and growth.

2.
Biopreserv Biobank ; 21(2): 208-216, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36516138

ABSTRACT

Objectives: This work investigates whether changes in a biospecimen's molecular composition from formaldehyde fixation drive changes in the mid infrared (MID-IR) spectrum. Our ultimate goal was to develop an analytical metrology that could be used to accurately determine the fixation time of a tissue sample as a surrogate to overall tissue quality. Methods: Multiple unstained formalin-fixed paraffin-embedded tissue samples were scanned with an MID-IR microscope to identify a molecular fingerprint of formaldehyde fixation. The fixation specific patterns were then mined to develop a predictive model. A multiple tissue experiment using greater than 100 samples was designed to train the algorithm and validate the accuracy of predicting fixation status. Results: We present data that formaldehyde crosslinking results in alterations to multiple bands of the MID-IR spectra. The impact was most dramatic in the Amide I band, which is sensitive to the conformational state of proteins. The spectroscopic fixation signature was used to train a machine-learning model that could predict fixation time of unknown tissues with an average accuracy of 1.4 hours. Results were validated by histological stain quality for bcl-2, FOXP3, and ki-67. Further, two-dimensional imaging was used to visualize the spatial dependence of fixation, as demonstrated by multiple features in the tissue's vibrational spectra. Conclusions: This work demonstrates that it is possible to predict the fixation status of tissues for which the preanalytics are unknown. This novel capability could help standardize clinical tissue diagnostics and ensure every patient gets the absolutely best treatment based on the highest quality tissue sample.


Subject(s)
Formaldehyde , Proteins , Humans , Tissue Fixation/methods , Spectrophotometry, Infrared , Formaldehyde/chemistry , Machine Learning , Paraffin Embedding/methods
3.
Lab Invest ; 102(5): 545-553, 2022 05.
Article in English | MEDLINE | ID: mdl-34963687

ABSTRACT

Conventional histological stains, such as hematoxylin plus eosin (H&E), and immunohistochemistry (IHC) are mainstays of histology that provide complementary diagnostic information. H&E and IHC currently require separate slides, because the stains would otherwise obscure one another. This consumes small specimen, limiting the total amount of testing. Additionally, performing H&E and IHC on different slides does not permit comparison of staining at the single cell level, since the same cells are not present on each slide, and alignment of tissue features can be problematic due to changes in tissue landscape with sectioning. We have solved these problems by performing conventional staining and IHC on the same slide using invisible IHC chromogens, such that the chromogens are not visible when viewing the conventional stain and the conventional stain is excluded from images of the IHC. Covalently deposited chromogens provided a convenient route to invisible chromogen design and are stable to reagents used in conventional staining. A dual-camera brightfield microscope system was developed that permits simultaneous viewing of both visible conventional stains and invisible IHC chromogens. Simultaneous staining was demonstrated on several formalin-fixed paraffin-embedded tissue specimens using single and duplex IHC, with chromogens that absorb ultraviolet and near infrared light, followed by H&E staining. The concept was extended to other conventional stains, including mucicarmine special stain and Papanicoulou stain, and further extended to cytology specimens. In addition to interactive video review, images were recorded using multispectral imaging and image processing to provide flexible production of color composite images and enable quantitative analysis.


Subject(s)
Coloring Agents , Eosine Yellowish-(YS) , Hematoxylin , Immunohistochemistry , Staining and Labeling
4.
PLoS One ; 16(10): e0258495, 2021.
Article in English | MEDLINE | ID: mdl-34648597

ABSTRACT

Modern histopathology is built on the cornerstone principle of tissue fixation, however there are currently no analytical methods of detecting fixation and as a result, in clinical practice fixation is highly variable and a persistent source of error. We have previously shown that immersion in cold formalin followed by heated formalin is beneficial for preservation of histomorphology and have combined two-temperature fixation with ultra-sensitive acoustic monitoring technology that can actively detect formalin diffusing into a tissue. Here we expand on our previous work by developing a predictive statistical model to determine when a tissue is properly diffused based on the real-time acoustic signal. We trained the model based on the morphology and characteristic diffusion curves of 30 tonsil cores. To test our model, a set of 87 different tonsil samples were fixed with four different protocols: dynamic fixation according to our predictive algorithm (C/H:Dynamic, N = 18), gold-standard 24 hour room temperature (RT:24hr, N = 24), 6 hours in cold formalin followed by 1 hour in heated formalin (C/H:6+1, N = 21), and 2 hours in cold formalin followed by 1 hour in heated formalin (C/H:2+1, N = 24). Digital pathology analysis revealed that the C/H:Dynamic samples had FOXP3 staining that was spatially uniform and statistically equivalent to RT:24hr and C/H:6+1 fixation protocols. For comparison, the intentionally underfixed C/H:2+1 samples had significantly suppressed FOXP3 staining (p<0.002). Furthermore, our dynamic fixation protocol produced bcl-2 staining concordant with standard fixation techniques. The dynamically fixed samples were on average only submerged in cold formalin for 4.2 hours, representing a significant workflow improvement. We have successfully demonstrated a first-of-its-kind analytical method to assess the quality of fixation in real-time and have confirmed its performance with quantitative analysis of downstream staining. This innovative technology could be used to ensure high-quality and standardized staining as part of an expedited and fully documented preanalytical workflow.


Subject(s)
Palatine Tonsil/pathology , Tissue Fixation/methods , Forkhead Transcription Factors/metabolism , Formaldehyde/chemistry , Humans , Image Processing, Computer-Assisted , Immunohistochemistry , Palatine Tonsil/metabolism , Paraffin Embedding , Pre-Analytical Phase
5.
Lab Invest ; 100(8): 1124-1136, 2020 08.
Article in English | MEDLINE | ID: mdl-32341516

ABSTRACT

Brightfield microscopy is the preferred method of pathologists for diagnosing solid tumors, utilizing common staining techniques such as hematoxylin and eosin staining and immunohistochemistry (IHC). However, as our understanding of the complex tumor microenvironment grows, there is increasing demand for multiplexed biomarker detection. Currently, multiplexed IHC assays are almost exclusively based on immunofluorescence because brightfield techniques are limited by the broad spectral absorption of chromogens and a reliance on conventional 3-channel color cameras. In this work, we overcome these limitations by combining new chromogens possessing narrow absorbance bands with matched illumination channels and monochrome imaging. Multiplex IHC was performed using four or five covalently deposited chromogens and hematoxylin nuclear stain to preserve morphological context and detail. Brightfield illumination was provided with a tungsten lamp/filter wheel combination or filtered light emitting diodes to provide up to 12 illumination wavelengths. In addition, an automated rapid imaging system was developed, using a synchronized 12-LED illuminator, that could capture images at all wavelengths in under 1 s. In one example, a four-biomarker multiplex assay was designed and used to distinguish regions of adenocarcinoma and squamous cell carcinoma in non-small cell lung cancer. The technology was also validated with a five-biomarker assay in prostate cancer. Spectrally unmixed images of each biomarker demonstrated concordant expression patterns with DAB single stain on serial sections, indicating faithful identification of each biomarker. In each assay, all chromogens were well resolved by spectral unmixing to remove spectral crosstalk. While further characterization and refinement of the assay, and improvements in automation and user interface are necessary for pathologist acceptance, this approach to multiplex IHC and multispectral imaging has the potential to accelerate adoption of multiplexing by combining the medical value of high-order multiplexing with the speed, pathologist familiarity, and broadly established clinical utility of brightfield microscopy.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Diagnostic Imaging/methods , Immunohistochemistry/methods , Lung Neoplasms/metabolism , Staining and Labeling/methods , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Squamous Cell/diagnostic imaging , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Fluorescent Antibody Technique/methods , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Microscopy, Fluorescence/methods , Reproducibility of Results , Sensitivity and Specificity , Tumor Microenvironment
6.
Biopreserv Biobank ; 17(4): 303-311, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31107113

ABSTRACT

The development of precision testing for disease diagnosis has advanced medicine by specifically matching patients with drugs to treat specific diseases. High-quality diagnostics start with high-quality tissue specimens. The development and optimization of tissue handling and processing have lagged behind bioassay development. Ultrasound time-of-flight (TOF) technology has been successfully used to monitor the critical processing step of tissue fixation with formalin. In this study, we expand the use of this technology to monitor tissue dehydration and clearing by analyzing TOF signals from 270 different specimens, representing 13 different tissue types obtained through surgical resections. We determined the time constant τ90 for each tissue type for the following tissue processing solvents: 70% ethanol, 90% ethanol, 100% ethanol, and xylene. The TOF signals were correlated with tissue morphology to ensure that high-quality tissue was produced. Tissues can be grouped into those exhibiting fast and slow reagent diffusion. We monitored incomplete dehydration of tissue by skipping a key processing step, dehydration in absolute ethanol, and then correlated the τ90 with poor histomorphology, demonstrating that the technique can detect significant processing errors. Ultrasound TOF technology can therefore be used to monitor all phases of tissue processing cycle and yields an important preanalytical quality metric.


Subject(s)
Histocytological Preparation Techniques/methods , Pathology, Clinical/methods , Dehydration , Humans , Immunohistochemistry , Tissue Fixation
7.
Curr Pathobiol Rep ; 6(2): 135-143, 2018.
Article in English | MEDLINE | ID: mdl-29780664

ABSTRACT

PURPOSE OF REVIEW: Studying and developing preanalytical tools and technologies for the purpose of obtaining high-quality samples for histological assays is a growing field. Currently, there does not exist a standard practice for collecting, fixing, and monitoring these precious samples. There has been some advancement in standardizing collection for the highest profile tumor types, such as breast, where HER2 testing drives therapeutic decisions. This review examines the area of tissue collection, transport, and monitoring of formalin diffusion and details a prototype system that could be used to help standardize tissue collection efforts. RECENT FINDINGS: We have surveyed recent primary literature sources and conducted several site visits to understand the most error-prone processes in histology laboratories. This effort identified errors that resulted from sample collection techniques and subsequent transport delays from the operating room (OR) to the histology laboratories. We have therefore devised a prototype sample collection and transport concept. The system consists of a custom data logger and cold transport box and takes advantage of a novel cold + warm (named 2 + 2) fixation method. SUMMARY: This review highlights the beneficial aspects of standardizing tissue collection, fixation, and monitoring. In addition, a prototype system is introduced that could help standardize these processes and is compatible with use directly in the OR and from remote sites.

8.
Appl Immunohistochem Mol Morphol ; 25(3): 160-167, 2017 03.
Article in English | MEDLINE | ID: mdl-28027117

ABSTRACT

Personalized medicine promises diagnosis and treatment of disease at the individual level and relies heavily on clinical specimen integrity and diagnostic assay quality. Preanalytics, the collection and handling steps of a clinical specimen before immunohistochemistry or other clinical assay, are critically important to enable the correct diagnosis of disease. However, the effects of preanalytics are often overlooked due to a lack of standardization and limited assessment tools to quantify their variation. Here, we report a novel real-time ultrasound time-of-flight instrument that is capable of monitoring and imaging the critical step in formalin fixation, diffusion of the fixative into tissue, which provides a quantifiable quality metric for tissue fixation in the clinical laboratory ensuring consistent downstream molecular assay results. We analyzed hundreds of tissue specimens from 34 distinct human tissue types and 12 clinically relevant diseased tissues for diffusion and fixation metrics. Our measurements can be converted into tissue diffusivity constants that correlate with the apparent diffusion constant calculated using magnetic resonance imaging (R=0.83), despite the differences in the approaches, indicating that our approach is biophysically plausible. Using data collected from time-of-flight analysis of many tissues, we have therefore developed a novel rapid fixation program that could ensure high-quality downstream assay results for a broad range of human tissue types.


Subject(s)
Precision Medicine , Tissue Fixation/methods , Ultrasonics , Humans , Immunohistochemistry
9.
J Med Imaging (Bellingham) ; 3(1): 017002, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26866049

ABSTRACT

The preservation of certain labile cancer biomarkers with formaldehyde-based fixatives can be considerably affected by preanalytical factors such as quality of fixation. Currently, there are no technologies capable of quantifying a fixative's concentration or the formation of cross-links in tissue specimens. This work examined the ability to detect formalin diffusion into a histological specimen in real time. As formaldehyde passively diffused into tissue, an ultrasound time-of-flight (TOF) shift of several nanoseconds was generated due to the distinct sound velocities of formalin and exchangeable fluid within the tissue. This signal was resolved with a developed digital acoustic interferometry algorithm, which compared the phase differential between signals and computed the absolute TOF with subnanosecond precision. The TOF was measured repeatedly across the tissue sample for several hours until diffusive equilibrium was realized. The change in TOF from 6-mm thick ex vivo human tonsil fit a single-exponential decay ([Formula: see text]) with rate constants that varied drastically spatially between 2 and 10 h ([Formula: see text]) due to substantial heterogeneity. This technology may prove essential to personalized cancer diagnostics by documenting and tracking biospecimen preanalytical fixation, guaranteeing their suitability for diagnostic assays, and speeding the workflow in clinical histopathology laboratories.

10.
PLoS One ; 9(11): e113608, 2014.
Article in English | MEDLINE | ID: mdl-25409462

ABSTRACT

Phosphorylated signaling molecules are biomarkers of cancer pathophysiology and resistance to therapy, but because phosphoprotein analytes are often labile, poorly controlled clinical laboratory practices could prevent translation of research findings in this area from the bench to the bedside. We therefore compared multiple biomarker and phosphoprotein immunohistochemistry (IHC) results in 23 clinical colorectal carcinoma samples after either a novel, rapid tissue fixation protocol or a standard tissue fixation protocol employed by clinical laboratories, and we also investigated the effect of a defined post-operative "cold" ischemia period on these IHC results. We found that a one-hour cold ischemia interval, allowed by ASCO/CAP guidelines for certain cancer biomarker assays, is highly deleterious to certain phosphoprotein analytes, specifically the phosphorylated epidermal growth factor receptor (pEGFR), but shorter ischemic intervals (less than 17 minutes) facilitate preservation of phosphoproteins. Second, we found that a rapid 4-hour, two temperature, formalin fixation yielded superior staining in several cases with select markers (pEGFR, pBAD, pAKT) compared to a standard overnight room temperature fixation protocol, despite taking less time. These findings indicate that the future research and clinical utilities of phosphoprotein IHC for assessing colorectal carcinoma pathophysiology absolutely depend upon attention to preanalytical factors and rigorously controlled tissue fixation protocols.


Subject(s)
Biomarkers, Tumor/metabolism , Colorectal Neoplasms/pathology , Tissue Fixation/methods , Colorectal Neoplasms/metabolism , ErbB Receptors/metabolism , Fixatives/chemistry , Formaldehyde/chemistry , Humans , Immunohistochemistry , Phosphoproteins/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Temperature , bcl-Associated Death Protein/metabolism
11.
Phys Med Biol ; 58(1): N1-12, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-23221479

ABSTRACT

Recent clinical studies have demonstrated that photoacoustic imaging (PAI) provides important diagnostic information during a routine breast exam for cancer. PAI enhances contrast between blood vessels and background tissue, which can help characterize suspicious lesions. However, most PAI systems are either not compatible with commercial ultrasound systems or inefficiently deliver light to the region of interest, effectively reducing the sensitivity of the technique. To address and potentially overcome these limitations, we developed an accessory for a standard linear ultrasound array that optimizes light delivery for PAI. The photoacoustic enabling device (PED) exploits an optically transparent acoustic reflector to help direct laser illumination to the region of interest. This study compares the PED with standard fiber bundle illumination in scattering and non-scattering media. In scattering media with the same incident fluence, the PED enhanced the photoacoustic signal by 18 dB at a depth of 5 mm and 6 dB at a depth of 20 mm. To demonstrate in vivo feasibility, we also used the device to image a mouse with a pancreatic tumor. The PED identified blood vessels at the periphery of the tumor, suggesting that PAI provides complementary contrast to standard pulse echo ultrasound. The PED is a simple and inexpensive solution that facilitates the translation of PAI technology to the clinic for routine screening of breast cancer.


Subject(s)
Photoacoustic Techniques/instrumentation , Ultrasonics/instrumentation , Animals , Cell Line, Tumor , Humans , Mice , Optical Phenomena , Skin Neoplasms/diagnostic imaging , Time Factors , Ultrasonography
12.
IEEE Trans Biomed Eng ; 59(10): 2782-91, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22851231

ABSTRACT

In this study, we develop a complete microwave-induced thermoacoustic imaging (TAI) model for potential breast cancer imaging application. Acoustic pressures generated by different breast tissue targets are investigated by finite-difference time-domain simulations of the entire TAI process including the feeding antenna, matching mechanism, fluidic environment, 3-D breast model, and acoustic transducer. Simulation results achieve quantitative relationships between the input microwave peak power and the resulting specific absorption rate as well as the output acoustic pressure. Microwave frequency dependence of the acoustic signals due to different breast tissues is established across a broadband frequency range (2.3-12 GHz), suggesting key advantages of spectroscopic TAI compare to TAI at a single frequency. Reconstructed thermoacoustic images are consistent with the modeling results. This model will contribute to design, optimization, and safety evaluation of microwave-induced TAI and spectroscopy.


Subject(s)
Breast Neoplasms/diagnosis , Breast/anatomy & histology , Microwaves , Models, Biological , Photoacoustic Techniques/methods , Breast/physiology , Breast Neoplasms/pathology , Computer Simulation , Electromagnetic Radiation , Female , Humans , Pressure
13.
J Biomed Opt ; 16(2): 026012, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21361696

ABSTRACT

Understanding the tumor microenvironment is critical to characterizing how cancers operate and predicting their response to treatment. We describe a novel, high-resolution coregistered photoacoustic (PA) and pulse echo (PE) ultrasound system used to image the tumor microenvironment. Compared to traditional optical systems, the platform provides complementary contrast and important depth information. Three mice are implanted with a dorsal skin flap window chamber and injected with PC-3 prostate tumor cells transfected with green fluorescent protein. The ensuing tumor invasion is mapped during three weeks or more using simultaneous PA and PE imaging at 25 MHz, combined with optical and fluorescent techniques. Pulse echo imaging provides details of tumor structure and the surrounding environment with 100-µm(3) resolution. Tumor size increases dramatically with an average volumetric growth rate of 5.35 mm(3)/day, correlating well with 2-D fluorescent imaging (R = 0.97, p < 0.01). Photoacoustic imaging is able to track the underlying vascular network and identify hemorrhaging, while PA spectroscopy helps classify blood vessels according to their optical absorption spectrum, suggesting variation in blood oxygen saturation. Photoacoustic and PE imaging are safe, translational modalities that provide enhanced depth resolution and complementary contrast to track the tumor microenvironment, evaluate new cancer therapies, and develop molecular contrast agents in vivo.


Subject(s)
Elasticity Imaging Techniques/instrumentation , Imaging, Three-Dimensional/instrumentation , Prostatic Neoplasms/diagnostic imaging , Ultrasonography, Doppler/instrumentation , Animals , Cell Line, Tumor , Equipment Design , Equipment Failure Analysis , Male , Mice , Mice, SCID , Reproducibility of Results , Sensitivity and Specificity
14.
Opt Express ; 18(18): 18625-32, 2010 Aug 30.
Article in English | MEDLINE | ID: mdl-20940754

ABSTRACT

A clinical ultrasound scanner and 14 MHz linear array collected real-time photoacoustic images (PAI) during an injection of gold nanorods (GNRs) near the region of a mature PC-3 prostate tumor in mice implanted with a skin flap window chamber. Three dimensional spectroscopic PAI (690-900 nm) was also performed to investigate absorption changes near the tumor and enhance specific detection of GNRs. Whereas GNRs improved PAI contrast (+18 dB), the photoacoustic spectrum was consistent with the elevated near infrared absorption of GNRs. The versatile imaging platform potentially accelerates development of photoacoustic contrast agents and drug delivery for cancer imaging and therapy.


Subject(s)
Diagnostic Imaging/methods , Metal Nanoparticles/chemistry , Microscopy/methods , Neoplasms/pathology , Acoustics , Animals , Contrast Media/pharmacology , Dermatology/instrumentation , Dermatology/methods , Disease Progression , Drug Delivery Systems , Gold/chemistry , Light , Mice , Nanotechnology/methods , Ultrasonography/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...