Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oecologia ; 177(4): 1195-210, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25698138

ABSTRACT

Strong solar irradiation in combination with still air and dry soil can cause prostrate high-mountain plants to heat up considerably and ultimately suffer heat damage. Such heat damage has been repeatedly shown for vegetative structures, but not for reproductive structures, which we expected to be particularly vulnerable to heat. Heat effects on cold-adapted plants may increase with rising global temperatures and the predicted increase in heat waves. We have tested the heat tolerance of reproductive versus vegetative shoots at different reproductive stages, comparing ten common plant species from different elevation belts in the European Alps. Plant samples were exposed to temperatures in 2-K steps of 30 min each between 42 and 56 °C. Heat damage was assessed by visual rating and vital staining. Reproductive shoots were on average 2.5 K less heat tolerant (LT50, i.e. the mean temperature causing 50 % heat damage, 47.2 °C) than vegetative shoots (mean LT50 49.7 °C). Initial heat injuries (mean LT10) were observed at 43-45 °C in heat-susceptible species and at 45-47 °C in more heat-tolerant species, in at least one reproductive stage. Generally, heat tolerance was significantly higher during fruiting than during the bud stages and anthesis. Prostrate species with acaulescent buds and flowers tolerated heat better than those with caulescent buds and flowers. Petals were the most heat-susceptible plant structure and mature pollen the most heat tolerant. Based on these data, heat tolerance of reproductive structures appears to be adapted to the prevailing maximum temperatures which the plants experience during different reproductive stages in their environment. During hot spells, however, heat tolerance thresholds may be exceeded. More frequent heat waves would decrease the reproductive output and, consequently, the competitiveness of heat-susceptible species.


Subject(s)
Adaptation, Physiological , Altitude , Ecosystem , Flowers/growth & development , Hot Temperature , Stress, Physiological , Air , Plant Diseases , Pollen , Reproduction , Soil
2.
PLoS One ; 9(2): e89099, 2014.
Article in English | MEDLINE | ID: mdl-24551224

ABSTRACT

Tolerance towards hypoxia is highly pronounced in zebrafish. In this study even beneficial effects of hypoxia, specifically enhanced survival of zebrafish larvae, could be demonstrated. This effect was actually more pronounced in breakdance mutants, which phenotypically show cardiac arrhythmia. Breakdance mutants (bre) are characterized by chronically reduced cardiac output. Despite an about 50% heart rate reduction, they become adults, but survival rate significantly drops to 40%. Normoxic bre animals demonstrate increased hypoxia inducible factor 1 a (Hif-1α) expression, which indicates an activated hypoxic signaling pathway. Consequently, cardiovascular acclimation, like cardiac hypertrophy and increased erythrocyte concentration, occurs. Thus, it was hypothesized, that under hypoxic conditions survival might be even more reduced. When bre mutants were exposed to hypoxic conditions, they surprisingly showed higher survival rates than under normoxic conditions and even reached wildtype values. In hypoxic wildtype zebrafish, survival yet exceeded normoxic control values. To specify physiological acclimation, cardiovascular and metabolic parameters were measured before hypoxia started (3 dpf), when the first differences in survival rate occurred (7 dpf) and when survival rate plateaued (15 dpf). Hypoxic animals expectedly demonstrated Hif-1α accumulation and consequently enhanced convective oxygen carrying capacity. Moreover, bre animals showed a significantly enhanced heart rate under hypoxic conditions, which reached normoxic wildtype values. This improvement in convective oxygen transport ensured a sufficient oxygen and nutrient supply and was also reflected in the significantly higher mitochondrial activity. The highly optimized energy metabolism observed in hypoxic zebrafish larvae might be decisive for periods of higher energy demand due to organ development, growth and increased activity. However, hypoxia increased survival only during a short period of development and starting hypoxia before or after this phase reduced survival, particularly in bre animals. Thus, the physiological plasticity, which enables zebrafish larvae to benefit from a hypoxia, occurs only within a narrow developmental window.


Subject(s)
Arrhythmias, Cardiac/complications , Hypoxia/complications , Zebrafish/physiology , Animals , Blotting, Western , Energy Metabolism , Lactic Acid/metabolism , Larva/physiology , Mitochondria/metabolism , Oligonucleotide Array Sequence Analysis , Oxygen/metabolism , Partial Pressure , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , Staining and Labeling , Survival Analysis
3.
Plant Methods ; 9(1): 7, 2013 Mar 14.
Article in English | MEDLINE | ID: mdl-23497517

ABSTRACT

BACKGROUND: Heat stress and heat damage to plants gain globally increasing importance for crop production and plant survival in endangered habitats. Therefore the knowledge of heat tolerance of plants is of great interest. As many heat tolerance measurement procedures require detachment of plants and protocols expose samples to various heat temperatures in darkness, the ecological relevance of such results may be doubted. To overcome these constraints we designed a novel field compatible Heat Tolerance Testing System (HTTS) that opens the opportunity to induce controlled heat stress on plants in situ under full natural solar irradiation. Subsequently, heat tolerance can be evaluated by a variety of standard viability assays like the electrolyte leakage test, chlorophyll fluorescence measurements and visual assessment methods. Furthermore, recuperation can be studied under natural environmental conditions which is impossible when detached plant material is used. First results obtained on three alpine dwarf - shrubs are presented. RESULTS: When heat tolerance of Vaccinium gaultherioides Bigelow was tested with the HTTS in situ, the visual assessment of leaves showed 50% heat injury (LT50) at 48.3°C, while on detached leaves where heat exposure took place in small heat chambers this already happened at 45.8°C. Natural solar irradiation being applied during heat exposure in the HTTS had significantly protective effects: In Loiseleuria procumbens L. (Desv.), if heat exposure (in situ) took place in darkness, leaf heat tolerance was 50.6°C. In contrast, when heat exposure was conducted under full natural solar irradiation heat tolerance was increased to 53.1°C. In Rhododendron ferrugineum L. heat tolerance of leaves was 42.5°C if the exposure took place ex situ and in darkness, while it was significantly increased to 45.8°C when this happened in situ under natural solar irradiation. CONCLUSIONS: The results obtained with the HTTS tested in the field indicate a mitigating effect of natural solar irradiation during heat exposure. Commonly used laboratory based measurement procedures expose samples in darkness and seem to underestimate leaf heat tolerance. Avoidance of detachment by the use of the HTTS allows studying heat tolerance and recuperation processes in the presence of interacting external abiotic, biotic and genetic factors under field conditions. The investigation of combined effects of heat exposure under full solar irradiation, of recuperation and repair processes but also of possible damage amplification into the results with the HTTS appears to be particularly useful as it allows determining heat tolerance of plants with a considerably high ecological significance.

SELECTION OF CITATIONS
SEARCH DETAIL
...