Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Chemosphere ; 349: 140782, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38013028

ABSTRACT

To evaluate the environmental concerns associated with heavy metals (HMs) during their translocations in food chains, it is crucial to gather data on the types of HMs present in soils in order to ascertain their toxicity and potential to migrate. An overview of the findings from several physical techniques used to determine and identify the HMs, sediments, individual minerals, and organic components in contaminated agricultural and industrial soils, is provided in this review article. These studies cover a variety of X-ray-based analytical techniques, including most widely used ones like X-ray absorption near edge structure, extended X-ray absorption fine structure, X-ray diffraction, and less popular ones X-ray fluorescence, etc. When compared to techniques that rely on laboratory radiation sources, synchrotron radiation offers more precision and efficiency. These methods could pinpoint the primary mechanisms influencing the soil's ability to transport contaminants and track their subsequent migration up the food chain.


Subject(s)
Metals, Heavy , Soil Pollutants , Soil/chemistry , X-Rays , Metals, Heavy/analysis , Minerals , Agriculture , Soil Pollutants/analysis
2.
Plant Physiol Biochem ; 201: 107808, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37290135

ABSTRACT

Plant hormones have been well known since Charles Darwin as signaling molecules directing plant metabolism. Their action and transport pathways are at the top of scientific interest and were reviewed in many research articles. Modern agriculture applies phytohormones as supplements to achieve desired physiological plant response. Auxins are a class of plant hormones extensively used for crop management. Auxins stimulate the formation of lateral roots and shoots, seed germination, while extensively high concentrations of these chemicals act as herbicides. Natural auxins are unstable; light or enzyme action leads to their degradation. Moreover, the concentration dependant action of phytohormones denier one-shot injection of these chemicals and require constant slow additive of supplement. It obstructs the direct introduction of auxins. On the other hand, delivery systems can protect phytohormones from degradation and provide a slow release of loaded drugs. Moreover, this release can be managed by external stimuli like pH, enzymes, or temperature. The present review is focused on three auxins: indole-3-acetic, indole-3-butyric, and 1-naphthaleneacetic acids. We collected some examples of inorganic (oxides, Ag, layered double hydroxides) and organic (chitosan, organic formulations) delivery systems. The action of carriers can enhance auxin effects via protection and targeted delivery of loaded molecules. Moreover, nanoparticles can act as nano fertilizers, intensifying the phytohormone effect, providing slow controlled release. So delivery systems for auxins are extremely attractive for modern agriculture opening sustainable management of plant metabolism and morphogenesis.


Subject(s)
Indoleacetic Acids , Nanoparticles , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Delayed-Action Preparations , Indoles/chemistry , Indoles/metabolism , Plants/metabolism
3.
Sci Total Environ ; 880: 163330, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37023818

ABSTRACT

Biochar can be used for soil remediation in environmentally beneficial manner, especially when combined with nanomaterials. After a decade of research, still, no comprehensive review was conducted on the effectiveness of biochar-based nanocomposites in controlling heavy metal immobilization at soil interfaces. In this paper, the recent progress in immobilizing heavy metals using biochar-based nanocomposite materials were reviewed and compared their efficacy against that of biochar alone. In details, an overview of results on the immobilization of Pb, Cd, Cu, Zn, Cr, and As was presented by different nanocomposites made by various biochars derived from kenaf bar, green tea, residual bark, cornstalk, wheat straw, sawdust, palm fiber, and bagasse. Biochar nanocomposite was found to be most effective when combined with metallic nanoparticles (Fe3O4 and FeS) and carbonaceous nanomaterials (graphene oxide and chitosan). This study also devoted special consideration to different remediation mechanisms by which the nanomaterials affect the effectiveness of the immobilization process. The effects of nanocomposites on soil characteristics related to pollution migration, phytotoxicity, and soil microbial composition were assessed. A future perspective on nanocomposites' use in contaminated soils was presented.


Subject(s)
Metals, Heavy , Nanostructures , Soil Pollutants , Soil Pollutants/analysis , Metals, Heavy/analysis , Charcoal , Soil , Cadmium
4.
Environ Geochem Health ; 44(2): 387-398, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34319461

ABSTRACT

Organic matter (OM) and enzymes activity can act as indicators of the time and level of soil contamination with heavy metal. The goal of this study is evaluation of the effect of chronic long-term soil contamination with Cu on OM and biological activity in Spolic Technosols. The monitoring plot is located in the zone of industrial wastewater storage and sludge reservoirs in the Seversky Donets River flood plain. The total amount of Cu in the investigated soils varied greatly from 52 to 437 mg/kg. The results of Cu sequential fractionation the contaminated soil have shown that the chemical fraction composition of metal changed when the soil contamination level increased. The amount of Cu compounds associated with OM and Fe and Mn oxides was also higher. Fractions of OM from the humic and fulvic acids groups were studied. Soil was subjected to extraction with cold and hot water, and the content of water-soluble OM (WSOM) was determined. An increased solubility of humic and fulvic acids as well as elevated content of cold and hot extraction WSOM was established. The cold-extracted amount of WSOM increased with an enhance in the Cu content. The long-term contamination of soil with Cu leads to an adaptation of microorganisms to this adverse environmental factor, and this adaptation is manifested in the WSOM content increase. The effect of Cu contamination on microbiological activity was assessed by plate-counting culturable microorganisms and determining urease and dehydrogenase enzymatic activity. A high level of soil contamination with Cu showed a noticeable negative effect on the number of soil bacteria; however, active and potentially active bacteria were observed even in the highly contaminated soils. The changes in soil OM and microbial communities caused by Cu pollution can lead to disruption of ecosystem functioning.


Subject(s)
Metals, Heavy , Soil Pollutants , Copper/analysis , Ecosystem , Metals, Heavy/chemistry , Metals, Heavy/toxicity , Soil/chemistry , Soil Pollutants/analysis
5.
Environ Geochem Health ; 44(2): 335-347, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33180207

ABSTRACT

Modeling metal sorption in soils is of great importance to predict the fate of heavy metals and to assess the actual risk driven from pollution. The present study focuses on adsorption of HM ions on two types of hydromorphic soils, including calcaric fluvisols loamic and calcaric fluvic arenosols. The individual and competitive adsorption behaviors of Cu and Zn on soils and soil constituents are evaluated comprehensively. It is established that the sorption processes were best described with the Langmuir model. The results suggest that the calcaric fluvic arenosols are more vulnerable to heavy metal input compared to fluvisols loamic. In all cases, Cu had a higher range of values of the adsorption process parameters relative to Zn. The Zn is likely to be the most critical environmental factor in such soils since it exhibited a decreased sorption under competitive conditions. The retention mechanisms of HM in hydromorphic soils are considered. Based on theoretical calculations of ion activity in soil solutions using solubility diagrams of Cu and Zn compounds, the possibility of precipitation of Cu hydroxide and Zn carbonate in the studied soils is shown. Direct physical methods of nondestructive testing (XAFS and XRD) are applied to experimentally prove the formation of these HM compounds on the surface of montmorillonite, the dominant mineral in hydromorphic soils, and calcite. Thus, the combination of both physicochemical methods and direct physical methods can provide a large amount of real information about the mechanisms of HM retain with solid phases.


Subject(s)
Metals, Heavy , Soil Pollutants , Adsorption , Copper/analysis , Metals, Heavy/analysis , Soil/chemistry , Soil Pollutants/analysis , Zinc/analysis
6.
Environ Geochem Health ; 44(2): 319-333, 2022 Feb.
Article in English | MEDLINE | ID: mdl-32862268

ABSTRACT

Soil contamination by heavy metals (HM) is a worldwide problem for human health. To reduce risk to human health from exposure to toxic chemicals associated with soil contamination, it is necessary to monitor and assess HM concentrations in the soil for places where the concentration exceeds the acceptable levels. Spatial patterning is a necessary tool for assessment of the exposure risk of HM contamination. Soil sampling (n = 65) was carried out in technogenically polluted soils located at Rostov oblast to study the content and spatial distribution of four HM (Cu, Zn, Pb, and Cr) in the surface layer (0-20 cm) of the impact zone of former Lake Atamanskoe (floodplain of the Seversky Donets River valley, Rostov region) with an area of 3.91 km2. Extremely high values of HM concentrations were found with the maximum values of 702 mg/kg, 72,886 mg/kg, 2300 mg/kg, 259 mg/kg for Cu, Zn, Pb, and Cr, respectively. Inverse distance-weighted (IDW) interpolation was used to prepare 3D monoelement images of HM. Lognormal kriging and indicator kriging techniques were applied to create elemental spatial distribution maps and HM probability maps. The results showed that the total content of Cu, Zn, Pb, and Cr was moderately spatially dependent (nugget-to-sill ratio ranged from 31 to 38%), whereas the contamination index Zc formed strong spatial dependence patterns (nugget-to-sill ratio ranged from 0 to 21.4%). The obtained results of this study could serve as a guide to the authorities in identifying those areas which need remediation. Moreover, this study provides a tool for assessing the hygienic situation in the vicinity of Kamensk-Shakhtinsky (Rostov region) for decision making that can help to minimize the environmental risk of technogenic soil contamination of HM.


Subject(s)
Metals, Heavy , Soil Pollutants , China , Environmental Monitoring/methods , Floods , Humans , Metals, Heavy/analysis , Risk Assessment , Rivers , Soil/chemistry , Soil Pollutants/analysis
7.
Environ Geochem Health ; 44(2): 511-526, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33609207

ABSTRACT

Assessment of spatial patterns of potentially toxic metals is one of the most urgent tasks in soil chemistry. In this study, descriptive statistics and three methods of multivariate statistical analysis, such as the hierarchical cluster analysis (HCA), correlation analysis, and conditional inference tree (CIT), were used to identify patterns and potential sources of heavy metals (Co, Ni, Cu, Cr, Pb, MnO, and Zn). The investigation was carried out on 81 sample points, using 20 testing parameters. A strong positive correlation found among Ni, Cu, Zn, and HCA results has confirmed the common origin of the elements from waste discharge. Hierarchical CA divided the 81 test sites into 5 classes based on the soil quality and HMs contamination similarity. Regression trees for Cr, Pb, Zn, and Cu were verified by the splitting factor including HMs content and soil chemistry factors. The CIT has revealed that the elements (Cr, Pb, Zn, and Cu) concentration values are split at the first level by some other metal, indicating common anthropogenic impact resulting from industrial waste discharges. The factors at the next hierarchical level of splitting, in addition to the HMs, include compounds belonging to soil chemistry variables (SiO2, Al2O3, and K2O). The CIT nonlinear regression model is in good agreement with the data: R2 values for log-transformed concentrations of Cr, Pb, Zn, and Cu are equal to 0.775; 0.774; 0.775; 0.804, respectively.


Subject(s)
Metals, Heavy , Soil Pollutants , China , Environmental Monitoring/methods , Lakes , Metals, Heavy/analysis , Risk Assessment , Silicon Dioxide/analysis , Soil/chemistry , Soil Pollutants/analysis
8.
J Sci Food Agric ; 101(6): 2312-2318, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33006376

ABSTRACT

BACKGROUND: The prolonged use of traditional moldboard ploughing often results in soil degradation and, ultimately, has an impact on national food security. Therefore, the implementation of resource-saving technologies (minimal and No-till) is a promising approach in the development of agriculture, especially in drought regions. The present study reports the results of long-term research on the effect of various tillage methods (moldboard ploughing, minimal tillage and No-till technique) on the nitrogen content of Haplic Chernozem of the European part of Southern Russia. The revealed regularities can be used as a theoretical basis for the effective use of resource-saving technologies, including No-till, in the zone of insufficient moisture. RESULTS: Long-term (59 years) cultivation of winter wheat using traditional moldboard ploughing has decreased the soil organic material (SOM) by 35% and total nitrogen by 32% in the soil. Minimization of tillage, in contrast, recovers the nitrogen potential of the soil in winter wheat agrocenoses. There is a statistically confirmed dependence of the content of SOM and total nitrogen on the tillage method of the upper soil horizon, with no significant effect of the tillage methods on intensity ammonification and nitrification. However, the content of nitrate-nitrogen during resource-saving tillage methods (22.8-24.4 mg kg-1 ) was higher than that after ploughing (20.3 mg kg-1 ) during all the years of the study, indicating the higher content of easily mineralizable nitrogen-containing compounds in the soil after minimal tillage. CONCLUSION: The use of resource-saving tillage technologies under conditions of insufficient moisture stabilizes the nitrogen content in soil and can improve nitrogen nutrition of plants. © 2020 Society of Chemical Industry.


Subject(s)
Crop Production/methods , Nitrogen/metabolism , Triticum/growth & development , Droughts , Nitrates/analysis , Nitrates/metabolism , Nitrification , Nitrogen/analysis , Russia , Seasons , Soil/chemistry , Triticum/metabolism
9.
Environ Geochem Health ; 43(4): 1673-1687, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32026274

ABSTRACT

Nowadays, nanotechnology is one of the most dynamically developing and most promising technologies. However, the safety issues of using metal nanoparticles, their environmental impact on soil and plants are poorly understood. These studies are especially important in terms of copper-based nanomaterials because they are widely used in agriculture. Concerning that, it is important to study the mechanism behind the mode of CuO nanoparticles action at the ultrastructural intracellular level. It is established that the contamination with CuO has had a negative influence on the development of spring barley. A greater toxic effect has been exerted by the introduction of CuO nanoparticles as compared to the macrodispersed form. A comparative analysis of the toxic effects of copper oxides and nano-oxides on plants has shown changes in the tissue and intracellular levels in the barley roots. However, qualitative changes in plant leaves have not practically been observed. In general, conclusions can be made that copper oxide in nano-dispersed form penetrates better from the soil into the plant and can accumulate in large quantities in it.


Subject(s)
Copper/toxicity , Hordeum/drug effects , Metal Nanoparticles/toxicity , Soil Pollutants/toxicity , Hordeum/ultrastructure , Oxides/analysis , Plant Leaves/chemistry , Seasons
10.
Ecotoxicol Environ Saf ; 208: 111471, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33068982

ABSTRACT

Potentially toxic elements (PTE) pollution has a pronounced negative effect on the soil and its components. The characteristics of soil organic matter and the activity of soil enzymes can serve as sensitive indicators of the degree of changes occurring in the soil. This study aims to assess the effect of long-term severe soil contamination with Zn and Cu on water-soluble organic matter (WSOM) and the associated changes in the biochemical activity of microorganisms. The total content of Zn and Cu in the studied soils varies greatly: Zn from 118 to 65,311 mg/kg, Cu from 52 to 437 mg/kg. The content of WSOM was determined using cold and hot extraction. It was revealed that the WSOM, extracted with cold water is a sensitive indicator reflecting the nature of the interaction of Zn and Cu with it. With an increase in the Cu and Zn content, the amount of WSOM extracted with cold water increases due to rise in the complex-bound metal compounds associated with it. The content of complex-bound compounds Zn in Spolic Technosols reaches 50% of the total metal content. It is shown that one of the biogeochemical mechanisms of microorganisms' adaptation to metal contamination is clearly manifested by the increase in the content of WSOM. The precipitation of metal carbonates develops in the soil which reduces the mobility and toxicity of PTE. Due to this mechanism, a decrease in the activity of dehydrogenases and urease was not prominent in all studied soils, despite the very high level of pollution and the transformation of organic matter. The study of the relationship of PTE with the most easily transformed part of WSOM and the activity of soil enzymes is of great importance for an objective assessment of possible environmental risks.


Subject(s)
Copper/analysis , Soil Pollutants/analysis , Zinc/analysis , Copper/toxicity , Environmental Pollution/analysis , Environmental Pollution/statistics & numerical data , Metals , Metals, Heavy/analysis , Soil/chemistry , Soil Pollutants/toxicity , Water , Zinc/toxicity
11.
Environ Geochem Health ; 43(6): 2301-2315, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32794112

ABSTRACT

Metal speciation, linked directly to bioaccessibility and lability, is a key to be considered when assessing associated human and environmental health risks originated from anthropogenic activities. To identify the Zn and Cu speciation in the highly contaminated, technogenically transformed soils (Technosol) from the impact zone near the industrial sludge reservoirs of chemical plant (Siverskyi Donets River floodplain, southern Russia), the validity of the BCR sequential extraction procedure using the X-ray absorption fine-structure and X-ray powder diffraction (XRD) analyses was examined after each of the three stages. After the removal of exchange and carbonate-bonded Zn and Cu compounds from Technosol (first stage of extraction), the resulting residual soil showed enrichment in a great diversity of metal compounds, primarily with Me-S and Me-O bonds. The number of compounds with a higher solubility decreased at the subsequent stages of extraction. In the residual soil left over after extracting the first and second fractions, the dominant Zn-S bond appeared as würtzite (hexagonal ZnS) that made up more than 50%, while the Cu-S bond was almost completely represented only by chalcocite (Cu2S). The XRD analysis revealed the authigenic minerals of metals with S: sphalerite (cubic ZnS), würtzite (hexagonal ZnS), covellite (CuS) and bornite (Cu5FeS4). The scanning electron microscopy data confirmed that würtzite was the dominant form of Me with sulfur-containing and carbonate-containing minerals. The Zn-S bond was the main component (57%), whereas the Cu-O bond was dominant in the residual fraction (the fraction after the third-stage extraction). The results revealed that the composition of the residual fractions might include some of the most stable and hard-to-recover metal compounds of technogenic origin. Thus, the application of the novel instrumental methods, coupled with the chemical fractionation, revealed the incomplete selectivity of the extractants in the extraction of Zn and Cu in long-term highly contaminated soils.


Subject(s)
Copper/isolation & purification , Soil Pollutants/chemistry , Soil Pollutants/isolation & purification , Zinc/isolation & purification , Chemical Fractionation/methods , Copper/analysis , Copper/chemistry , Ferrous Compounds/chemistry , Humans , Microscopy, Electron, Scanning , Powders , Russia , Sewage , Soil/chemistry , Soil Pollutants/analysis , Spectrometry, X-Ray Emission , Sulfides/chemistry , X-Ray Absorption Spectroscopy , X-Ray Diffraction , Zinc/analysis , Zinc/chemistry , Zinc Compounds
12.
Viruses ; 12(8)2020 07 24.
Article in English | MEDLINE | ID: mdl-32722032

ABSTRACT

The mass smallpox vaccination campaign has played a crucial role in smallpox eradication. Various strains of the vaccinia virus (VACV) were used as a live smallpox vaccine in different countries, their origin being unknown in most cases. The VACV strains differ in terms of pathogenicity exhibited upon inoculation of laboratory animals and reactogenicity exhibited upon vaccination of humans. Therefore, each generated strain or clonal variant of VACV needs to be thoroughly studied in in vivo systems. The clonal variant 14 of LIVP strain (LIVP-14) was the study object in this work. A comparative analysis of the virulence and immunogenicity of LIVP-14 inoculated intranasally (i.n.), intradermally (i.d.), or subcutaneously (s.c.) to BALB/c mice at doses of 108, 107, and 106 pfu was carried out. Adult mice exhibited the highest sensitivity to the i.n. administered LIVP-14 strain, although the infection was not lethal. The i.n. inoculated LIVP-14 replicated efficiently in the lungs. Furthermore, this virus was accumulated in the brain at relatively high concentrations. Significantly lower levels of LIVP-14 were detected in the liver, kidneys, and spleen of experimental animals. No clinical manifestations of the disease were observed after i.d. or s.c. injection of LIVP-14 to mice. After s.c. inoculation, the virus was detected only at the injection site, while it could disseminate to the liver and lungs when delivered via i.d. administration. A comparative analysis of the production of virus-specific antibodies by ELISA and PRNT revealed that the highest level of antibodies was induced in i.n. inoculated mice; a lower level of antibodies was observed after i.d. administration of the virus and the lowest level after s.c. injection. Even at the lowest studied dose (106 pfu), i.n. or i.d. administered LIVP-14 completely protected mice against infection with the cowpox virus at the lethal dose. Our findings imply that, according to the ratio between such characteristics as pathogenicity/immunogenicity/protectivity, i.d. injection is the optimal method of inoculation with the VACV LIVP-14 strain to ensure the safe formation of immune defense after vaccination against orthopoxviral infections.


Subject(s)
Antibodies, Viral/blood , Vaccinia virus/immunology , Vaccinia virus/pathogenicity , Administration, Intranasal , Animals , Antibodies, Neutralizing/blood , Cowpox virus/immunology , Female , Immunogenicity, Vaccine , Injections, Intradermal , Injections, Subcutaneous , Male , Mice , Mice, Inbred BALB C , Smallpox Vaccine , Vaccinia/prevention & control , Vaccinia/virology , Vaccinia virus/classification , Virulence
13.
Environ Geochem Health ; 42(12): 4087-4100, 2020 Dec.
Article in English | MEDLINE | ID: mdl-31264040

ABSTRACT

Coal-fired power stations are significant sources of soil contamination with heavy metals and a source of hazard to human health. The soil samples (n = 25) selected in the area around Novocherkassk Power Station (Rostov Region, Russia) within a radius of up to 20 km revealed the enrichment with Pb, Cu and Zn. The heavy metals (HM) content in soil is reduced in the following sequence: Mn > Cr > Zn > Ni > Cu > Pb > Co. The correlation diagrams of the HM total content in soils revealed a significant association between the following HM pairs: Cu-Pb, Ni-Cu, Cd-Ni, Cd-Cu (r ≥ 0.7, p < 0.001). The concentration coefficient (Kc) and the total pollution coefficient (Zc) were used to estimate anthropogenic pollution. The use of generalized additive model (GAM) to detect the dependence of HM distribution on factors revealed the significance of the source distance. The influence of wind rhumb on HM distribution has a complex nonlinear nature. A GAM shows a good performance for all data sets: R2 = 0.71, 81% deviance explained for Zn, R2 = 0.85, 91% deviance explained for Cd, R2 = 0.63, 70% deviance explained for Ni. Thus, GAM model reveals significant factors (Dist_km, rhumb) in forming pollution by heavy metals in studied impact zone and proved a valuable approach to assess the degree and sources of pollution in soils on a large scale.


Subject(s)
Coal/analysis , Metals, Heavy/analysis , Power Plants , Soil Pollutants/analysis , Environmental Monitoring , Humans , Risk Assessment , Russia , Spatial Analysis , Wind
14.
MethodsX ; 5: 217-226, 2018.
Article in English | MEDLINE | ID: mdl-29755951

ABSTRACT

Method of determination of heavy metals loosely bound compounds in the soil was developed using three separate extractions. The group of loosely bound compounds of metals includes exchangeable, complexed, and specifically adsorbed forms. This method is available, rapid and not expensive. Extraction takes less than 24 h. Sample procedure preparation is simple, and the analysis consists of only three steps, which can be performed simultaneously. The parallel extraction gives reliable and reproducible results and provides a relatively complete idea of the metals mobility in the soil, their availability to plants, migratory capacity, and transformation. •Method is suitable for a wide range of heavy metals and soil types. From the obtained data, the content of loosely bound compounds of heavy metals and the coefficients of metals mobility in the soil can be calculated.•Method is suitable for estimation the microelement supply of uncontaminated soils. The content of elements in the 1 N CH3COONH4 extract characterizes the actual pool of elements, and their content in the 1 N HCl extract defines their potential pool in the soil.•The coefficient of mobility (Km) is calculated to assess the contamination of soil with heavy metals. Estimation criteria of Km for Haplic Chernozem were developed.

SELECTION OF CITATIONS
SEARCH DETAIL
...