Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 144(3): 1292-304, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17616508

ABSTRACT

A novel phenyltriazole acetic acid compound (DAS734) produced bleaching of new growth on a variety of dicotyledonous weeds and was a potent inhibitor of Arabidopsis (Arabidopsis thaliana) seedling growth. The phytotoxic effects of DAS734 on Arabidopsis were completely alleviated by addition of adenine to the growth media. A screen of ethylmethanesulfonate-mutagenized Arabidopsis seedlings recovered seven lines with resistance levels to DAS734 ranging from 5- to 125-fold. Genetic tests determined that all the resistance mutations were dominant and allelic. One mutation was mapped to an interval on chromosome 4 containing At4g34740, which encodes an isoform of glutamine phosphoribosylamidotransferase (AtGPRAT2), the first enzyme of the purine biosynthetic pathway. Sequencing of At4g34740 from the resistant lines showed that all seven contained mutations producing changes in the encoded polypeptide sequence. Two lines with the highest level of resistance (125-fold) contained the mutation R264K. The wild-type and mutant AtGPRAT2 enzymes were cloned and functionally overexpressed in Escherichia coli. Assays of the recombinant enzyme showed that DAS734 was a potent, slow-binding inhibitor of the wild-type enzyme (I(50) approximately 0.2 microm), whereas the mutant enzyme R264K was not significantly inhibited by 200 microm DAS734. Another GPRAT isoform in Arabidopsis, AtGPRAT3, was also inhibited by DAS734. This combination of chemical, genetic, and biochemical evidence indicates that the phytotoxicity of DAS734 arises from direct inhibition of GPRAT and establishes its utility as a new and specific chemical genetic probe of plant purine biosynthesis. The effects of this novel GPRAT inhibitor are compared to the phenotypes of known AtGPRAT genetic mutants.


Subject(s)
Acetates/pharmacology , Amidophosphoribosyltransferase/antagonists & inhibitors , Arabidopsis/drug effects , Herbicides/pharmacology , Triazoles/pharmacology , Allosteric Site , Amidophosphoribosyltransferase/genetics , Amino Acid Sequence , Arabidopsis/enzymology , Arabidopsis/genetics , Chromosome Mapping , Escherichia coli/genetics , Herbicide Resistance/genetics , Isoenzymes/antagonists & inhibitors , Molecular Sequence Data , Mutation , Phenotype , Purines/biosynthesis , Transformation, Genetic
2.
Phys Rev Lett ; 97(25): 258303, 2006 Dec 22.
Article in English | MEDLINE | ID: mdl-17280402

ABSTRACT

Creep experiments on polycrystalline surfactant hexagonal columnar phases show a power law regime, followed by a drastic fluidization before reaching a final stationary flow. The scaling of the fluidization time with the shear modulus of the sample and stress applied suggests that the onset of flow involves a bulk reorganization of the material. This is confirmed by x-ray scattering under stress coupled to in situ rheology experiments, which show a collective reorientation of all crystallites at the onset of flow. The analogy with the fracture of heterogeneous materials is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...