Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 862: 160656, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36493828

ABSTRACT

The flow regime change of rivers, especially transboundary rivers, affected by reservoir regulations is evident worldwide and has received much attention. Investigating dam-induced flow regime alterations is essential for understanding potential adverse downstream effects and facilitating dialogue around coordinated water use in transboundary basins, such as the Lancang River Basin (LRB). This study explored the value of combining several types of satellite Earth observation (EO) datasets that monitor different water balance components to constrain the parameter space of lumped conceptual hydrological models. Thus, we aimed to reconstruct the natural flow regimes upstream and downstream of the cascade reservoirs. Specifically, reservoir water storage changes were first estimated using satellite imagery and altimetry datasets. Then, storage changes were combined with hydrological model simulations of reservoir inflow to estimate the regulated flow regime downstream. Our results showed that integrated hydrological modeling combined with EO datasets exhibited better overall performance. Continuous warming and drying of the LRB resulted in a decrease in discharge of approximately 47 %. By comparing the simulated natural and regulated flow regimes, we revealed the pivotal role of the Xiaowan and Nuozhadu reservoirs in regulating natural flows. The wet season shortens (approximately 45 days), the flood peak flattens, and the low flow in the dry season has primarily increases. The two reservoirs attenuated 50 % of the flood peaks in the wet seasons and mitigated droughts by releasing up to 100 % of the natural flows in the dry seasons at the China-Laos border. Overall, these results enhance the understanding of upper reservoir operation, and the approaches can be applied to studies of dammed basins under climate change scenarios when knowledge of the upstream area is limited.


Subject(s)
Environmental Monitoring , Models, Theoretical , Environmental Monitoring/methods , Rivers , China , Hydrology
2.
Sci Total Environ ; 654: 72-84, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30439696

ABSTRACT

A hydroeconomic optimization modelling framework for joint water allocation and water quality management is presented in this study. Water resources planning is often limited to water quantity, even though water quantity and quality are interdependent. Including water quality in a hydroeconomic optimization model increases complexity and uncertainty. In this study, the problem is addressed with a multi-reservoir, multi-temporal, multi-objective linear optimization model with fixed but spatially variable water quality. Model complexity is kept at a manageable level, leading to limited demand for computational resources, despite a high spatial resolution and representation of both surface water and groundwater resources. The model is applied to Haihe River basin, a water-scarce and highly polluted river basin in China. Economic trade-offs between limiting groundwater overdraft and sub-basin specific costs as well as maps of water availability shadow prices are presented. Adding water quality to the model framework impacts water availability shadow prices, which can influence model-based decision support. If groundwater abstractions are limited to sustainable levels, Haihe River basin will benefit from increasing inter-basins transfers and groundwater recharge to the shallow plain area aquifer. A scenario analysis showed that managed aquifer recharge in the plain area is also a feasible adaptation strategy.

3.
Ground Water ; 54(1): 92-103, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25964991

ABSTRACT

Wellfield management is a multiobjective optimization problem. One important objective has been energy efficiency in terms of minimizing the energy footprint (EFP) of delivered water (MWh/m(3) ). However, power systems in most countries are moving in the direction of deregulated markets and price variability is increasing in many markets because of increased penetration of intermittent renewable power sources. In this context the relevant management objective becomes minimizing the cost of electric energy used for pumping and distribution of groundwater from wells rather than minimizing energy use itself. We estimated EFP of pumped water as a function of wellfield pumping rate (EFP-Q relationship) for a wellfield in Denmark using a coupled well and pipe network model. This EFP-Q relationship was subsequently used in a Stochastic Dynamic Programming (SDP) framework to minimize total cost of operating the combined wellfield-storage-demand system over the course of a 2-year planning period based on a time series of observed price on the Danish power market and a deterministic, time-varying hourly water demand. In the SDP setup, hourly pumping rates are the decision variables. Constraints include storage capacity and hourly water demand fulfilment. The SDP was solved for a baseline situation and for five scenario runs representing different EFP-Q relationships and different maximum wellfield pumping rates. Savings were quantified as differences in total cost between the scenario and a constant-rate pumping benchmark. Minor savings up to 10% were found in the baseline scenario, while the scenario with constant EFP and unlimited pumping rate resulted in savings up to 40%. Key factors determining potential cost savings obtained by flexible wellfield operation under a variable power price regime are the shape of the EFP-Q relationship, the maximum feasible pumping rate and the capacity of available storage facilities.


Subject(s)
Groundwater , Water Supply/economics , Water Wells , Denmark , Models, Theoretical
4.
Ground Water ; 51(3): 385-97, 2013.
Article in English | MEDLINE | ID: mdl-22891736

ABSTRACT

Salt water intrusion models are commonly used to support groundwater resource management in coastal aquifers. Concentration data used for model calibration are often sparse and limited in spatial extent. With airborne and ground-based electromagnetic surveys, electrical resistivity models can be obtained to provide high-resolution three-dimensional models of subsurface resistivity variations that can be related to geology and salt concentrations on a regional scale. Several previous studies have calibrated salt water intrusion models with geophysical data, but are typically limited to the use of the inverted electrical resistivity models without considering the measured geophysical data directly. This induces a number of errors related to inconsistent scales between the geophysical and hydrologic models and the applied regularization constraints in the geophysical inversion. To overcome these errors, we perform a coupled hydrogeophysical inversion (CHI) in which we use a salt water intrusion model to interpret the geophysical data and guide the geophysical inversion. We refer to this methodology as a Coupled Hydrogeophysical Inversion-State (CHI-S), in which simulated salt concentrations are transformed to an electrical resistivity model, after which a geophysical forward response is calculated and compared with the measured geophysical data. This approach was applied for a field site in Santa Cruz County, California, where a time-domain electromagnetic (TDEM) dataset was collected. For this location, a simple two-dimensional cross-sectional salt water intrusion model was developed, for which we estimated five uniform aquifer properties, incorporating the porosity that was also part of the employed petrophysical relationship. In addition, one geophysical parameter was estimated. The six parameters could be resolved well by fitting more than 300 apparent resistivities that were comprised by the TDEM dataset. Except for three sounding locations, all the TDEM data could be fitted close to a root-mean-square error of 1. Possible explanations for the poor fit of these soundings are the assumption of spatial uniformity, fixed boundary conditions and the neglecting of 3D effects in the groundwater model and the TDEM forward responses.


Subject(s)
Groundwater/analysis , Models, Theoretical , Seawater/analysis , Water Movements , Calibration , California , Electromagnetic Phenomena , Environmental Monitoring/methods , Geology , Groundwater/chemistry , Seawater/chemistry
5.
J Environ Manage ; 90(7): 2252-60, 2009 May.
Article in English | MEDLINE | ID: mdl-18406512

ABSTRACT

A coupled surface water-groundwater model of the Okavango Delta has been built based on the United States Geological Survey software MODFLOW 2000 including the SFR2 package for stream-flow routing. It will provide a new tool for evaluating water management and climate change scenarios. The delta's size and limited accessibility make direct, on the ground data acquisition difficult. Remote sensing methods are the most promising source of acquiring spatially distributed data for both model input parameters and calibration. Topography, aquifer thickness, channel positions, evapotranspiration and precipitation data are all based on remote sensing. Simulated flooding patterns are compared to patterns derived from visible to thermal NOAA-AVHRR data and microwave radar ENVISAT-ASAR data.


Subject(s)
Environmental Monitoring/methods , Water Movements , Wetlands , Botswana , Radar
6.
Environ Sci Technol ; 42(2): 570-6, 2008 Jan 15.
Article in English | MEDLINE | ID: mdl-18284164

ABSTRACT

Environmental fracturing offers assistance to remediation efforts at contaminated, low-permeability sites via creation of active fracture networks, and hence, reduction of mass transport limitations set by diffusion in low-permeability matrices. A pilot study of pneumatic fracturing, focusing on direct documentation of fracture propagation patterns and spacing, was performed at a typical basal clay till site. The study applied a novel package of documentation methods, including injection of five tracers with different characteristics (bromide, uvitex, fluorescein, rhodamine WT, and brilliant blue), subsequent tracer-filled fracture documentation via direct and indirect methods, and geological characterization of the fractured site. The direct documentation methods consisted of Geoprobe coring, augering, and excavation. A mass balance and conceptual model have been established for the distribution of the injected tracers in the subsurface. They reveal that tracer was distributed within 2 m of the fracturing well, mainly in existing fractures above the redox boundary (2 to 4 m.b.s.; 5 to 10 cm spacing). Spacing of observed tracer-filled fractures was large (>1 m) at greater depths. The number of fractures induced/activated could possibly be increased via adjustments to the fracturing equipment design.


Subject(s)
Aluminum Silicates , Water Supply , Clay , Geological Phenomena , Geology , Water Movements , Water Pollutants
SELECTION OF CITATIONS
SEARCH DETAIL
...