Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Immunity ; 57(7): 1482-1496.e8, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38697119

ABSTRACT

Toll-like receptor 7 (TLR7) is essential for recognition of RNA viruses and initiation of antiviral immunity. TLR7 contains two ligand-binding pockets that recognize different RNA degradation products: pocket 1 recognizes guanosine, while pocket 2 coordinates pyrimidine-rich RNA fragments. We found that the endonuclease RNase T2, along with 5' exonucleases PLD3 and PLD4, collaboratively generate the ligands for TLR7. Specifically, RNase T2 generated guanosine 2',3'-cyclic monophosphate-terminated RNA fragments. PLD exonuclease activity further released the terminal 2',3'-cyclic guanosine monophosphate (2',3'-cGMP) to engage pocket 1 and was also needed to generate RNA fragments for pocket 2. Loss-of-function studies in cell lines and primary cells confirmed the critical requirement for PLD activity. Biochemical and structural studies showed that PLD enzymes form homodimers with two ligand-binding sites important for activity. Previously identified disease-associated PLD mutants failed to form stable dimers. Together, our data provide a mechanistic basis for the detection of RNA fragments by TLR7.


Subject(s)
Endoribonucleases , Toll-Like Receptor 7 , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 7/genetics , Humans , Endoribonucleases/metabolism , Ligands , Phospholipase D/metabolism , Phospholipase D/genetics , RNA/metabolism , HEK293 Cells , Lysosomes/metabolism , Animals , Exonucleases/metabolism , Mice , Binding Sites
2.
Angew Chem Int Ed Engl ; 61(40): e202207175, 2022 10 04.
Article in English | MEDLINE | ID: mdl-35876840

ABSTRACT

2',3'-cGAMP is a cyclic A- and G-containing dinucleotide second messenger, which is formed upon cellular recognition of foreign cytosolic DNA as part of the innate immune response. The molecule binds to the adaptor protein STING, which induces an immune response characterized by the production of type I interferons and cytokines. The development of STING-binding molecules with both agonistic as well as antagonistic properties is currently of tremendous interest to induce or enhance antitumor or antiviral immunity on the one hand, or to treat autoimmune diseases on the other hand. To escape the host innate immune recognition, some viruses encode poxin endonucleases that cleave 2',3'-cGAMP. Here we report that dideoxy-2',3'-cGAMP (1) and analogs thereof, which lack the secondary ribose-OH groups, form a group of poxin-stable STING agonists. Despite their reduced affinity to STING, particularly the compound constructed from two A nucleosides, dideoxy-2',3'-cAAMP (2), features an unusually high antitumor response in mice.


Subject(s)
Interferon Type I , Membrane Proteins/genetics , Nucleosides , Animals , Antiviral Agents , Cytokines , DNA , Endonucleases , Immunity, Innate , Membrane Proteins/metabolism , Mice , Nucleotides, Cyclic , Nucleotidyltransferases/metabolism , Ribose
3.
Science ; 377(6603): 328-335, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35857590

ABSTRACT

Human NLRP1 (NACHT, LRR, and PYD domain-containing protein 1) is an innate immune sensor predominantly expressed in the skin and airway epithelium. Here, we report that human NLRP1 senses the ultraviolet B (UVB)- and toxin-induced ribotoxic stress response (RSR). Biochemically, RSR leads to the direct hyperphosphorylation of a human-specific disordered linker region of NLRP1 (NLRP1DR) by MAP3K20/ZAKα kinase and its downstream effector, p38. Mutating a single ZAKα phosphorylation site in NLRP1DR abrogates UVB- and ribotoxin-driven pyroptosis in human keratinocytes. Moreover, fusing NLRP1DR to CARD8, which is insensitive to RSR by itself, creates a minimal inflammasome sensor for UVB and ribotoxins. These results provide insight into UVB sensing by human skin keratinocytes, identify several ribotoxins as NLRP1 agonists, and establish inflammasome-driven pyroptosis as an integral component of the RSR.


Subject(s)
Inflammasomes , MAP Kinase Kinase Kinases , NLR Proteins , Pyroptosis , Ribosomes , Stress, Physiological , Anisomycin/toxicity , CARD Signaling Adaptor Proteins/metabolism , Humans , Inflammasomes/drug effects , Inflammasomes/metabolism , Inflammasomes/radiation effects , Keratinocytes/drug effects , Keratinocytes/metabolism , Keratinocytes/radiation effects , MAP Kinase Kinase Kinases/metabolism , Mutation , NLR Proteins/genetics , NLR Proteins/metabolism , Neoplasm Proteins/metabolism , Phosphorylation/drug effects , Phosphorylation/radiation effects , Pyroptosis/drug effects , Pyroptosis/radiation effects , Ribosomes/drug effects , Ribosomes/radiation effects , Ultraviolet Rays
4.
Nat Med ; 28(3): 496-503, 2022 03.
Article in English | MEDLINE | ID: mdl-35090165

ABSTRACT

Infection-neutralizing antibody responses after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or coronavirus disease 2019 vaccination are an essential component of antiviral immunity. Antibody-mediated protection is challenged by the emergence of SARS-CoV-2 variants of concern (VoCs) with immune escape properties, such as omicron (B.1.1.529), which is rapidly spreading worldwide. Here we report neutralizing antibody dynamics in a longitudinal cohort of coronavirus disease 2019 convalescent and infection-naive individuals vaccinated with mRNA BNT162b2 by quantifying SARS-CoV-2 spike protein antibodies and determining their avidity and neutralization capacity in serum. Using live-virus neutralization assays, we show that a superior infection-neutralizing capacity against all VoCs, including omicron, developed after either two vaccinations in convalescents or a third vaccination or breakthrough infection of twice-vaccinated, naive individuals. These three consecutive spike antigen exposures resulted in an increasing neutralization capacity per anti-spike antibody unit and were paralleled by stepwise increases in antibody avidity. We conclude that an infection-plus-vaccination-induced hybrid immunity or a triple immunization can induce high-quality antibodies with superior neutralization capacity against VoCs, including omicron.


Subject(s)
BNT162 Vaccine , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/prevention & control , Humans , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination
5.
J Exp Med ; 219(1)2022 01 03.
Article in English | MEDLINE | ID: mdl-34910085

ABSTRACT

In response to infection or cell damage, inflammasomes form intracellular multimeric protein complexes that play an essential role in host defense. Activation results in the maturation and subsequent secretion of pro-inflammatory cytokines of the IL-1 family and a specific cell death coined pyroptosis. Human NLRP1 was the first inflammasome-forming sensor identified at the beginning of the millennium. However, its functional relevance and its mechanism of activation have remained obscure for many years. Recent discoveries in the NLRP1 field have propelled our understanding of the functional relevance and molecular mode of action of this unique inflammasome sensor, which we will discuss in this perspective.


Subject(s)
NLR Proteins/genetics , NLR Proteins/metabolism , Animals , Biomarkers , Disease Susceptibility , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Inflammasomes/metabolism , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Signal Transduction , Species Specificity
7.
Science ; 371(6528)2021 01 29.
Article in English | MEDLINE | ID: mdl-33243852

ABSTRACT

Inflammasomes function as intracellular sensors of pathogen infection or cellular perturbation and thereby play a central role in numerous diseases. Given the high abundance of NLRP1 in epithelial barrier tissues, we screened a diverse panel of viruses for inflammasome activation in keratinocytes. We identified Semliki Forest virus (SFV), a positive-strand RNA virus, as a potent activator of human but not murine NLRP1B. SFV replication and the associated formation of double-stranded (ds) RNA was required to engage the NLRP1 inflammasome. Moreover, delivery of long dsRNA was sufficient to trigger activation. Biochemical studies revealed that NLRP1 binds dsRNA through its leucine-rich repeat domain, resulting in its NACHT domain gaining adenosine triphosphatase activity. Altogether, these results establish human NLRP1 as a direct sensor for dsRNA and thus RNA virus infection.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Host-Pathogen Interactions/immunology , Immunity, Innate , Inflammasomes/immunology , RNA, Double-Stranded/metabolism , RNA, Viral/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Alphavirus Infections/immunology , Animals , Apoptosis Regulatory Proteins/chemistry , HEK293 Cells , Humans , Hydrolysis , Inflammasomes/metabolism , Keratinocytes/immunology , Keratinocytes/metabolism , Keratinocytes/virology , Mice , Mice, Transgenic , NLR Proteins , Protein Domains , Semliki forest virus/immunology , Semliki forest virus/physiology , Virus Replication
8.
J Biol Chem ; 295(52): 18065-18075, 2020 12 25.
Article in English | MEDLINE | ID: mdl-33082141

ABSTRACT

TNF is a highly pro-inflammatory cytokine that contributes not only to the regulation of immune responses but also to the development of severe inflammatory diseases. TNF is synthesized as a transmembrane protein, which is further matured via proteolytic cleavage by metalloproteases such as ADAM17, a process known as shedding. At present, TNF is mainly detected by measuring the precursor or the mature cytokine of bulk cell populations by techniques such as ELISA or immunoblotting. However, these methods do not provide information on the exact timing and extent of TNF cleavage at single-cell resolution and they do not allow the live visualization of shedding events. Here, we generated C-tag TNF as a genetically encoded reporter to study TNF shedding at the single-cell level. The functionality of the C-tag TNF reporter is based on the exposure of a cryptic epitope on the C terminus of the transmembrane portion of pro-TNF on cleavage. In both denatured and nondenatured samples, this epitope can be detected by a nanobody in a highly sensitive and specific manner only upon TNF shedding. As such, C-tag TNF can successfully be used for the detection of TNF cleavage in flow cytometry and live-cell imaging applications. We furthermore demonstrate its applicability in a forward genetic screen geared toward the identification of genetic regulators of TNF maturation. In summary, the C-tag TNF reporter can be employed to gain novel insights into the complex regulation of ADAM-dependent TNF shedding.


Subject(s)
ADAM Proteins/metabolism , Genes, Reporter , Image Processing, Computer-Assisted/methods , Molecular Imaging/methods , Protein Kinase C/metabolism , Tumor Necrosis Factor-alpha/metabolism , ADAM Proteins/genetics , HEK293 Cells , Humans , Protein Kinase C/genetics , Proteolysis , Tumor Necrosis Factor-alpha/genetics
9.
EMBO J ; 39(19): e105071, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32840892

ABSTRACT

Inflammasomes execute a unique type of cell death known as pyroptosis. Mostly characterized in myeloid cells, caspase-1 activation downstream of an inflammasome sensor results in the cleavage and activation of gasdermin D (GSDMD), which then forms a lytic pore in the plasma membrane. Recently, CARD8 was identified as a novel inflammasome sensor that triggers pyroptosis in myeloid leukemia cells upon inhibition of dipeptidyl-peptidases (DPP). Here, we show that blocking DPPs using Val-boroPro triggers a lytic form of cell death in primary human CD4 and CD8 T cells, while other prototypical inflammasome stimuli were not active. This cell death displays morphological and biochemical hallmarks of pyroptosis. By genetically dissecting candidate components in primary T cells, we identify this response to be dependent on the CARD8-caspase-1-GSDMD axis. Moreover, DPP9 constitutes the relevant DPP restraining CARD8 activation. Interestingly, this CARD8-induced pyroptosis pathway can only be engaged in resting, but not in activated T cells. Altogether, these results broaden the relevance of inflammasome signaling and associated pyroptotic cell death to T cells, central players of the adaptive immune system.


Subject(s)
CARD Signaling Adaptor Proteins/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Inflammasomes/immunology , Lymphocyte Activation , Neoplasm Proteins/immunology , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/immunology , Humans , Intracellular Signaling Peptides and Proteins/immunology , Phosphate-Binding Proteins/immunology
10.
J Gen Virol ; 100(2): 278-288, 2019 02.
Article in English | MEDLINE | ID: mdl-30566072

ABSTRACT

A first step towards the development of a human immunodeficiency virus (HIV) animal model has been the identification and surmounting of species-specific barriers encountered by HIV along its replication cycle in cells from small animals. Serine incorporator proteins 3 (SERINC3) and 5 (SERINC5) were recently identified as restriction factors that reduce HIV-1 infectivity. Here, we compared the antiviral activity of SERINC3 and SERINC5 among mice, rats and rabbits, and their susceptibility to viral counteraction to their human counterparts. In the absence of viral antagonists, rodent and lagomorph SERINC3 and SERINC5 displayed anti-HIV activity in a similar range to human controls. Vesicular stomatitis virus G protein (VSV-G) pseudotyped virions were considerably less sensitive to restriction by all SERINC3/5 orthologs. Interestingly, HIV-1 Nef, murine leukemia virus (MLV) GlycoGag and equine infectious anemia virus (EIAV) S2 counteracted the antiviral activity of all SERINC3/5 orthologs with similar efficiency. Our results demonstrate that the antiviral activity of SERINC3/5 proteins is conserved in rodents and rabbits, and can be overcome by all three previously reported viral antagonists.


Subject(s)
HIV-1/growth & development , HIV-1/immunology , Host-Pathogen Interactions , Immunologic Factors/metabolism , nef Gene Products, Human Immunodeficiency Virus/metabolism , Animals , Genetic Vectors , Mice , Rabbits , Rats , Vesiculovirus/genetics , Vesiculovirus/growth & development
11.
Biochim Biophys Acta ; 1854(10 Pt A): 1536-44, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25748881

ABSTRACT

Immunoglobulins M (IgMs) are gaining increasing attention as biopharmaceuticals since their multivalent mode of binding can give rise to high avidity. Furthermore, IgMs are potent activators of the complement system. However, they are frequently difficult to express recombinantly and can suffer from low conformational stability. Here, the broadly neutralizing anti-HIV-1 antibody 2G12 was class-switched to IgM and then further engineered by introduction of 17 germline residues. The impact of these changes on the structure and conformational stability of the antibody was then assessed using a range of biophysical techniques. We also investigated the effects of the class switch and germline substitutions on the ligand-binding properties of 2G12 and its capacity for HIV-1 neutralization. Our results demonstrate that the introduced germline residues improve the conformational and thermal stability of 2G12-IgM without altering its overall shape and ligand-binding properties. Interestingly, the engineered protein was found to exhibit much lower neutralization potency than its wild-type counterpart, indicating that potent antigen recognition is not solely responsible for IgM-mediated HIV-1 inactivation.


Subject(s)
Antibodies, Monoclonal/chemistry , HIV Antibodies/chemistry , HIV Envelope Protein gp120/antagonists & inhibitors , HIV-1/drug effects , Immunoglobulin M/chemistry , Amino Acid Substitution , Animals , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Base Sequence , CHO Cells , Cricetulus , Gene Expression , HEK293 Cells , HIV Antibodies/biosynthesis , HIV Antibodies/immunology , HIV Antibodies/pharmacology , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/immunology , HIV-1/growth & development , Humans , Immunoglobulin Class Switching/genetics , Immunoglobulin M/biosynthesis , Immunoglobulin M/immunology , Immunoglobulin M/pharmacology , Molecular Sequence Data , Mutation , Neutralization Tests , Protein Conformation , Protein Engineering , Protein Stability , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Recombinant Proteins/pharmacology , Sequence Alignment , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...