Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 41(12): 2811-4, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-27304295

ABSTRACT

We report on the generation of a purely vibrational Raman comb, extending from the vacuum ultraviolet (184 nm) to the visible (478 nm), in hydrogen-filled kagomé-style photonic crystal fiber pumped at 266 nm. Stimulated Raman scattering and molecular modulation processes are enhanced by higher Raman gain in the ultraviolet. Owing to the pressure-tunable normal dispersion landscape of the "fiber + gas" system in the ultraviolet, higher-order anti-Stokes bands are generated preferentially in higher-order fiber modes. The results pave the way toward tunable fiber-based sources of deep and vacuum ultraviolet light for applications in, e.g., spectroscopy and biomedicine.

2.
Phys Rev Lett ; 115(24): 243901, 2015 Dec 11.
Article in English | MEDLINE | ID: mdl-26705636

ABSTRACT

In 1964 Bloembergen and Shen predicted that Raman gain could be suppressed if the rates of phonon creation and annihilation (by inelastic scattering) exactly balance. This is only possible if the momentum required for each process is identical, i.e., phonon coherence waves created by pump-to-Stokes scattering are identical to those annihilated in pump-to-anti-Stokes scattering. In bulk gas cells, this can only be achieved over limited interaction lengths at an oblique angle to the pump axis. Here we report a simple system that provides dramatic Raman gain suppression over long collinear path lengths in hydrogen. It consists of a gas-filled hollow-core photonic crystal fiber whose zero dispersion point is pressure adjusted to lie close to the pump laser wavelength. At a certain precise pressure, stimulated generation of Stokes light in the fundamental mode is completely suppressed, allowing other much weaker phenomena such as spontaneous Raman scattering to be explored at high pump powers.

3.
Opt Express ; 22(17): 20566-73, 2014 Aug 25.
Article in English | MEDLINE | ID: mdl-25321261

ABSTRACT

We report on the efficient, tunable, and selective frequency up-conversion of a supercontinuum spectrum via molecular modulation in a hydrogen-filled hollow-core photonic crystal fiber. The vibrational Q(1) Raman transition of hydrogen is excited in the fiber by a pump pre-pulse, enabling the excitation of a synchronous, collective oscillation of the molecules. This coherence wave is then used to up-shift the frequency of an arbitrarily weak, delayed probe pulse. Perfect phase-matching for this process is achieved by using higher order fiber modes and adjusting the pressure of the filling gas. Conversion efficiencies of ~50% are obtained within a tuning range of 25 THz.

4.
Opt Lett ; 38(18): 3673-6, 2013 Sep 15.
Article in English | MEDLINE | ID: mdl-24104843

ABSTRACT

We present free space coherent arrays of continuous-wave terahertz (THz) photomixers and compare the results to on-chip arrays. By altering the relative phases of the exciting laser signals, the relative THz phase between the array elements can be tuned, allowing for beam steering. In addition, the constructive interference of the emission of N elements leads to an increase of the focal intensity by a factor of N2 while reducing the beam width by ∼N(-1), below the diffraction limit of a single source. Such array architectures strongly improve the THz power distribution for stand-off spectroscopy and imaging systems while providing a huge bandwidth at the same time. We demonstrate this by beam profiles generated by a 2×2 and a 4×1 array for a transmission distance of 4.2 m. Spectra between 70 GHz and 1.1 THz have been recorded with these arrays.

SELECTION OF CITATIONS
SEARCH DETAIL
...