Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Neurosci ; 36(9): 3246-57, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22853738

ABSTRACT

We investigated the functional role of oscillatory activity in the local field potential (LFP) of the subthalamic nucleus (STN) in the pathophysiology of Parkinson's disease (PD). It has been postulated that beta (15-30 Hz) oscillatory activity in the basal ganglia induces PD motor symptoms. To assess this hypothesis, an LFP showing significant power in the beta frequency range (23 Hz) was used as a stimulus both in vitro and in vivo. We first demonstrated in rat brain slices that STN neuronal activity was driven by the LFP stimulation. We then applied beta stimulation to the STN of 16 rats and two monkeys while quantifying motor behaviour. Although stimulation-induced behavioural effects were observed, stimulation of the STN at 23 Hz induced no significant decrease in motor performance in either rodents or primates. This study is the first to show LFP-induced behaviour in both rats and primates, and highlights the complex relationship between beta power and parkinsonian symptoms.


Subject(s)
Beta Rhythm , Deep Brain Stimulation , Motor Activity , Neurons/physiology , Parkinson Disease/physiopathology , Subthalamic Nucleus/physiopathology , Animals , Behavioral Symptoms/etiology , Behavioral Symptoms/physiopathology , Female , Macaca mulatta , Male , Parkinson Disease/etiology , Rats , Rats, Sprague-Dawley , Rats, Wistar , Subthalamic Nucleus/cytology
2.
J Neurophysiol ; 102(4): 2312-25, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19625540

ABSTRACT

Fast inhibitory synaptic transmission in the brain relies on ionotropic GABA(A) receptors (GABA(A)R). Eighteen genes code for GABA(A)R subunits, but little is known about the epsilon subunit. Our aim was to identify the synaptic transmission properties displayed by native receptors incorporating epsilon. Immunogold localization detected epsilon at synaptic sites on locus coeruleus (LC) neurons. In situ hybridization revealed prominent signals from epsilon, and mRNAs, some low beta1 and beta3 signals, and no gamma signal. Using in vivo extracellular and in vitro patch-clamp recordings in LC, we established that neuron firing rates, GABA-activated currents, and mIPSC charge were insensitive to the benzodiazepine flunitrazepam (FLU), in agreement with the characteristics of recombinant receptors including an epsilon subunit. Surprisingly, LC provided binding sites for benzodiazepines, and GABA-induced currents were potentiated by diazepam (DZP) in the micromolar range. A number of GABA(A)R ligands significantly potentiated GABA-induced currents, and zinc ions were only active at concentrations above 1 muM, further indicating that receptors were not composed of only alpha and beta subunits, but included an epsilon subunit. In contrast to recombinant receptors including an epsilon subunit, GABA(A)R in LC showed no agonist-independent opening. Finally, we determined that mIPSCs, as well as ensemble currents induced by ultra-fast GABA application, exhibited surprisingly slow rise times. Our work thus defines the signature of native GABA(A)R with a subunit composition including epsilon: differential sensitivity to FLU and DZP and slow rise time of currents. We further propose that alpha(3,) beta(1/3,) and epsilon subunits compose GABA(A)R in LC.


Subject(s)
Locus Coeruleus/physiology , Neural Inhibition/physiology , Neurons/physiology , Receptors, GABA-A/metabolism , Synaptic Transmission/physiology , Action Potentials/drug effects , Animals , In Vitro Techniques , Inhibitory Postsynaptic Potentials/drug effects , Kinetics , Locus Coeruleus/drug effects , Male , Neural Inhibition/drug effects , Neurons/drug effects , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Rats, Wistar , Synaptic Transmission/drug effects , Xenopus , gamma-Aminobutyric Acid/metabolism
3.
FASEB J ; 19(13): 1771-7, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16260646

ABSTRACT

Information processing in the brain requires adequate background neuronal activity. As Parkinson's disease progresses, patients typically become akinetic; the death of dopaminergic neurons leads to a dopamine-depleted state, which disrupts information processing related to movement in a brain area called the basal ganglia. Using agonists of dopamine receptors in the D1 and D2 families on rat brain slices, we show that dopamine receptors in these two families govern the firing pattern of neurons in the subthalamic nucleus, a crucial part of the basal ganglia. We propose a conceptual frame, based on specific properties of dopamine receptors, to account for the dominance of different background firing patterns in normal and dopamine-depleted states.


Subject(s)
Neurons/metabolism , Receptors, Dopamine/physiology , Subthalamic Nucleus/metabolism , Animals , Basal Ganglia/metabolism , Basal Ganglia/pathology , Brain/metabolism , Brain/pathology , Dopamine/metabolism , Electrophysiology , Models, Biological , Parkinson Disease/metabolism , Parkinson Disease/pathology , Rats , Receptors, Dopamine/metabolism , Sleep , Synaptic Transmission
4.
J Neurophysiol ; 86(1): 75-85, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11431489

ABSTRACT

The subthalamic nucleus (STN) influences the output of the basal ganglia, thereby interfering with motor behavior. The main inputs to the STN are GABAergic. We characterized the GABA(A) receptors expressed in the STN and investigated the response of subthalamic neurons to the activation of GABA(A) receptors. Cell-attached and whole cell recordings were made from rat brain slices using the patch-clamp technique. The newly identified epsilon subunit confers atypical pharmacological properties on recombinant receptors, which are insensitive to barbiturates and benzodiazepines. We tested the hypothesis that native subthalamic GABA(A) receptors contain epsilon proteins. Applications of increasing concentrations of muscimol, a selective GABA(A) agonist, induced Cl(-) and HCO currents with an EC(50) of 5 microM. Currents induced by muscimol were fully blocked by the GABA(A) receptor antagonists, bicuculline and picrotoxin. They were strongly potentiated by the barbiturate, pentobarbital (+190%), and by the benzodiazepines, diazepam (+197%) and flunitrazepam (+199%). Spontaneous inhibitory postsynaptic currents were also significantly enhanced by flunitrazepam. Furthermore, immunohistological experiments with an epsilon subunit-specific antibody showed that the epsilon protein was not expressed within the STN. Native subthalamic GABA(A) receptors did not, therefore, display pharmacological or structural properties consistent with receptors comprising epsilon. Burst firing is a hallmark of Parkinson's disease. Half of the subthalamic neurons have the intrinsic capacity of switching from regular-firing to burst-firing mode when hyperpolarized by current injection. This raises the possibility that activation of GABA(A) receptors might trigger the switch. Statistical analysis of spiking activity established that 90% of intact neurons in vitro were in single-spike firing mode, whereas 10% were in burst-firing mode. Muscimol reversibly stopped recurrent electrical activity in all intact neurons. In neurons held in whole cell configuration, membrane potential hyperpolarized by -10 mV whilst input resistance decreased by 50%, indicating powerful membrane shunting. Muscimol never induced burst firing, even in neurons that exhibited the capacity of switching from regular- to burst-firing mode. These molecular and functional data indicate that native subthalamic GABA(A) receptors do not contain the epsilon protein and activation of GABA(A) receptors induces membrane shunting, which is essential for firing inhibition but prevents switching to burst-firing. They suggest that the STN, like many other parts of the brain, has the physiological and structural features of the widely expressed GABA(A) receptors consisting of alphabetagamma subunits.


Subject(s)
Neural Inhibition/physiology , Neurons/physiology , Receptors, GABA-A/metabolism , Subthalamic Nucleus/cytology , Subthalamic Nucleus/physiology , Animals , Bicarbonates/metabolism , Bicuculline/pharmacology , Chlorides/metabolism , Diazepam/pharmacology , Electrophysiology , Flunitrazepam/pharmacology , GABA Agonists/pharmacology , GABA Antagonists/pharmacology , GABA Modulators , Membrane Potentials/drug effects , Membrane Potentials/physiology , Muscimol/pharmacology , Neural Inhibition/drug effects , Organ Culture Techniques , Pentobarbital/pharmacology , Picrotoxin/analogs & derivatives , Picrotoxin/pharmacology , Rats , Rats, Wistar , Sesterterpenes
SELECTION OF CITATIONS
SEARCH DETAIL
...