Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 6(18): eaaz6579, 2020 05.
Article in English | MEDLINE | ID: mdl-32494680

ABSTRACT

Adoptive cell transfers have emerged as a disruptive approach to treat disease in a manner that is more specific than using small-molecule drugs; however, unlike traditional drugs, cells are living entities that can alter their function in response to environmental cues. In the present study, we report an engineered particle referred to as a "backpack" that can robustly adhere to macrophage surfaces and regulate cellular phenotypes in vivo. Backpacks evade phagocytosis for several days and release cytokines to continuously guide the polarization of macrophages toward antitumor phenotypes. We demonstrate that these antitumor phenotypes are durable, even in the strongly immunosuppressive environment of a murine breast cancer model. Conserved phenotypes led to reduced metastatic burdens and slowed tumor growths compared with those of mice treated with an equal dose of macrophages with free cytokine. Overall, these studies highlight a new pathway to control and maintain phenotypes of adoptive cellular immunotherapies.


Subject(s)
Immunotherapy , Macrophages , Animals , Cytokines/metabolism , Immunologic Factors/metabolism , Immunotherapy, Adoptive , Macrophages/metabolism , Mice , Phagocytosis
2.
ACS Appl Mater Interfaces ; 12(23): 26424-26431, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32390411

ABSTRACT

Phosphorescence is commonly used in nature to communicate using light. There are many ways to activate phosphorescence, including UV light, heat, and mechanical forces, but there are few methods to control phosphorescence once activated. Here, we present soft composite devices-which we call "optical filters"-for controlling the release of light by phosphorescence within a stretchable matrix. The filters consist of liquid metal wires, phosphorescent particles, and thermochromic pigments embedded in an elastomeric matrix. UV light initially activates the phosphorescence of rare-earth long-lasting luminescent particles. At room temperature, the thermochromic pigments block the phosphorescence from leaving the matrix. However, Joule heating of the liquid metal can change the opacity of the thermochromic pigments, which tunes the color, intensity, and wavelength of phosphorescence that exits the composite. In addition, the resistance of the liquid metal wires changes with physical deformation, thereby converting mechanical forces (strain, compression, and pneumatic inflation) into an optical response. Controlled phosphorescence, combined with the electrical conductivity of the liquid metal and the overall soft matrix, enables potential applications as an electronic skin for soft robotics, stretchable electronics, and prosthetics.

3.
Adv Sci (Weinh) ; 6(21): 1901579, 2019 Nov 06.
Article in English | MEDLINE | ID: mdl-31728290

ABSTRACT

Herein, elastomeric fibers that have shape memory properties due to the presence of a gallium core that can undergo phase transition from solid to liquid in response to mild heating are described. The gallium is injected into the core of a hollow fiber formed by melt processing. This approach provides a straightforward method to create shape memory properties from any hollow elastic fiber. Solidifying the core changes the effective fiber modulus from 4 to 1253 MPa. This increase in stiffness can preserve the fiber in a deformed shape. The elastic energy stored in the polymer shell during deformation drives the fiber to relax back to its original geometry upon melting the solid gallium core, allowing for shape memory. Although waxes are used previously for this purpose, the use of gallium is compelling because of its metallic electrical and thermal conductivity. In addition, the use of a rigid metallic core provides perfect fixity of the shape memory fiber. Notably, the use of gallium-with a melting point above room temperature but below body temperature-allows the user to melt and deform local regions of the fiber by hand and thereby tune the effective modulus and shape of the fiber.

SELECTION OF CITATIONS
SEARCH DETAIL
...