Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Geophys Res Atmos ; 121(8): 4122-4141, 2016 Apr 27.
Article in English | MEDLINE | ID: mdl-29637042

ABSTRACT

Passive optical retrievals of cloud liquid water path (LWP), like those implemented for Moderate Resolution Imaging Spectroradiometer (MODIS), rely on cloud vertical profile assumptions to relate optical thickness (τ) and effective radius (re ) retrievals to LWP. These techniques typically assume that shallow clouds are vertically homogeneous; however, an adiabatic cloud model is plausibly more realistic for shallow marine boundary layer cloud regimes. In this study a satellite retrieval simulator is used to perform MODIS-like satellite retrievals, which in turn are compared directly to the large-eddy simulation (LES) output. This satellite simulator creates a framework for rigorous quantification of the impact that vertical profile features have on LWP retrievals, and it accomplishes this while also avoiding sources of bias present in previous observational studies. The cloud vertical profiles from the LES are often more complex than either of the two standard assumptions, and the favored assumption was found to be sensitive to cloud regime (cumuliform/stratiform). Confirming previous studies, drizzle and cloud top entrainment of dry air are identified as physical features that bias LWP retrievals away from adiabatic and toward homogeneous assumptions. The mean bias induced by drizzle-influenced profiles was shown to be on the order of 5-10 g/m2. In contrast, the influence of cloud top entrainment was found to be smaller by about a factor of 2. A theoretical framework is developed to explain variability in LWP retrievals by introducing modifications to the adiabatic re profile. In addition to analyzing bispectral retrievals, we also compare results with the vertical profile sensitivity of passive polarimetric retrieval techniques.

2.
Appl Opt ; 50(8): 1065-81, 2011 Mar 10.
Article in English | MEDLINE | ID: mdl-21394178

ABSTRACT

In regions of deep tropical convection, ice particles often undergo aggregation and form complex chains. To investigate the effect of the representation of aggregates on electromagnetic scattering calculations, we developed an algorithm to efficiently specify the geometries of aggregates and to compute some of their geometric parameters, such as the projected area. Based on in situ observations, ice aggregates are defined as clusters of hexagonal plates with a chainlike overall shape, which may have smooth or roughened surfaces. An aggregate representation is developed with 10 ensemble members, each consisting of between 4-12 hexagonal plates. The scattering properties of an individual aggregate ice particle are computed using either the discrete dipole approximation or an improved geometric optics method, depending upon the size parameters. Subsequently, the aggregate properties are averaged over all geometries. The scattering properties of the aggregate representation closely agree with those computed from 1000 different aggregate geometries. As a result, the aggregate representation provides an accurate and computationally efficient way to represent all aggregates occurring within ice clouds. Furthermore, the aggregate representation can be used to study the influence of these complex ice particles on the satellite-based remote sensing of ice clouds. The computed cloud reflectances for aggregates are different from those associated with randomly oriented individual hexagonal plates. When aggregates are neglected, simulated cloud reflectances are generally lower at visible and shortwave-infrared wavelengths, resulting in smaller effective particle sizes but larger optical thicknesses.

3.
Appl Opt ; 44(26): 5512-23, 2005 Sep 10.
Article in English | MEDLINE | ID: mdl-16161667

ABSTRACT

The single-scattering properties of ice particles in the near- through far-infrared spectral region are computed from a composite method that is based on a combination of the finite-difference time-domain technique, the T-matrix method, an improved geometrical-optics method, and Lorenz-Mie theory. Seven nonspherical ice crystal habits (aggregates, hexagonal solid and hollow columns, hexagonal plates, bullet rosettes, spheroids, and droxtals) are considered. A database of the single-scattering properties for each of these ice particles has been developed at 49 wavelengths between 3 and 100 microm and for particle sizes ranging from 2 to 10,000 microm specified in terms of the particle maximum dimension. The spectral variations of the single-scattering properties are discussed, as well as their dependence on the particle maximum dimension and effective particle size. The comparisons show that the assumption of spherical ice particles in the near-IR through far-IR region is generally not optimal for radiative transfer computation. Furthermore, a parameterization of the bulk optical properties is developed for mid-latitude cirrus clouds based on a set of 21 particle size distributions obtained from various field campaigns.

4.
Appl Opt ; 43(12): 2490-9, 2004 Apr 20.
Article in English | MEDLINE | ID: mdl-15119619

ABSTRACT

We investigate the phase matrices of droxtals at wavelengths of 0.66 and 11 microm by using an improved geometrical-optics method. An efficient method is developed to specify the incident rays and the corresponding impinging points on the particle surface necessary to initialize the ray-tracing computations. At the 0.66-microm wavelength, the optical properties of droxtals are different from those of hexagonal ice crystals. At the 11-microm wavelength, the phase functions for droxtals are essentially featureless because of strong absorption within the particles, except for ripple structures that are caused by the phase interference of the diffracted wave.

5.
Appl Opt ; 42(21): 4389-95, 2003 Jul 20.
Article in English | MEDLINE | ID: mdl-12921290

ABSTRACT

The Mueller matrix (M) corresponding to the phase matrix in the backscattering region (scattering angles ranging from 175 degrees to 180 degrees) is investigated for light scattering at a 0.532-microm wavelength by hexagonal ice crystals, ice spheres, and water droplets. For hexagonal ice crystals we assume three aspect ratios (plates, compact columns, and columns). It is shown that the contour patterns of the backscattering Mueller matrix elements other than M11, M44, M14, and M41 depend on particle geometry; M22 and M33 are particularly sensitive to the aspect ratio of ice crystals. The Mueller matrix for spherical ice particles is different from those for nonspherical ice particles. In addition to discriminating between spherical and nonspherical particles, the Mueller matrix may offer some insight as to cloud thermodynamic phase. The contour patterns for large ice spheres with an effective size of 100 microm are substantially different from those associated with small water droplets with an effective size of 4 microm.

6.
Appl Opt ; 42(15): 2653-64, 2003 May 20.
Article in English | MEDLINE | ID: mdl-12777000

ABSTRACT

We investigate the errors associated with the use of circular cylinders as surrogates for hexagonal columns in computing the optical properties of pristine ice crystals at infrared (8-12-microm) wavelengths. The equivalent circular cylinders are specified in terms of volume (V), projected area (A), and volume-to-area ratio that are equal to those of the hexagonal columns. We use the T-matrix method to compute the optical properties of the equivalent circular cylinders. We apply the finite-difference time-domain method to compute the optical properties of hexagonal ice columns smaller than 40 microm. For hexagonal columns larger than 40 microm we employ an improved geometric optics method and a stretched scattering potential technique developed in previous studies to calculate the phase function and the extinction (or absorption) efficiency, respectively. The differences between the results for circular cylinders and hexagonal columns are of the order of a few percent. Thus it is quite reasonable to use a circular cylinder geometry as a surrogate for pristine hexagonal ice columns for scattering calculations at infrared (8-12-microm) wavelengths. Although the pristine ice crystals can be approximated as circular cylinders in scattering calculations at infrared wavelengths, it is shown that optical properties of individual aggregates cannot be well approximated by those of individual finite columns or cylinders.

7.
Appl Opt ; 41(15): 2740-59, 2002 May 20.
Article in English | MEDLINE | ID: mdl-12027161

ABSTRACT

The conventional Lorenz-Mie formalism is extended to the case for a coated sphere embedded in an absorbing medium. The apparent and inherent scattering cross sections of a particle, derived from the far field and near field, respectively, are different if the host medium is absorptive. The effect of absorption within the host medium on the phase-matrix elements associated with polarization depends on the dielectric properties of the scattering particle. For the specific cases of a soot particle coated with a water layer and an ice sphere containing an air bubble, the phase-matrix elements -P12/P11 and P33/P11 are unique if the shell is thin. The radiative transfer equation for a multidisperse particle system embedded within an absorbing medium is discussed. Conventional multiple-scattering computational algorithms can be applied if scaled apparent single-scattering properties are applied.

SELECTION OF CITATIONS
SEARCH DETAIL
...