Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 20272, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34642393

ABSTRACT

Tetrapodal zinc oxide (t-ZnO) is used to fabricate polymer composites for many different applications ranging from biomedicine to electronics. In recent times, macroscopic framework structures from t-ZnO have been used as a versatile sacrificial template for the synthesis of multi-scaled foam structures from different nanomaterials such as graphene, hexagonal boron nitride or gallium nitride. Many of these fabrication methods rely on wet-chemical coating processes using nanomaterial dispersions, leading to a strong interest in the actual coating mechanism and factors influencing it. Depending on the type of medium (e.g. solvent) used, different results regarding the homogeneity of the nanomaterial coating can be achieved. In order to understand how a medium influences the coating behavior, the evaporation process of water and ethanol is investigated in this work using in situ synchrotron radiation-based micro computed tomography (SRµCT). By employing propagation-based phase contrast imaging, both the t-ZnO network and the medium can be visualized. Thus, the evaporation process can be monitored non-destructively in three dimensions. This investigation showed that using a polar medium such as water leads to uniform evaporation and, by that, a homogeneous coating of the entire network.

2.
ACS Appl Mater Interfaces ; 13(3): 4545-4552, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33459023

ABSTRACT

In this study, polydimethylsiloxane (PDMS)/polythiourethane (PTU) composite reinforced with tetrapodal shaped micro-nano ZnO particles (t-ZnO) was successfully produced by a versatile, industrially applicable polymer blending process. On the surface of this composite, PDMS is distributed in the form of microdomains embedded in a PTU matrix. The composite inherited not only good mechanical properties originating from PTU but also promising fouling-release (FR) properties due to the presence of PDMS on the surface. It was shown that the preferential segregation of PDMS domains at the polymer/air interface could be attributed to the difference in the surface free energy of PDMS and PTU. The PDMS microdomains at the PTU/air interface significantly reduced the barnacle adhesion strength on the composite. Both the pseudo- and natural barnacle adhesion strength on the composite was approximately 0.1 MPa, similar to that on pure PDMS. The pseudo-barnacle adhesion on reference surfaces AlMg3 and PTU reached approximately 4 and 6 MPa, respectively. Natural barnacles could not be removed intact from AlMg3 and PTU surfaces without breaking the shell, indicating that the adhesion strength was higher than the mechanical strength of a barnacle shell (approximately 0.4 MPa). The integrity of PDMS microdomains was maintained after 12 months of immersion in seawater and barnacle removal. No surface deteriorations were found. In short, the composite showed excellent potential as a long-term stable FR coating for marine applications.


Subject(s)
Biofouling/prevention & control , Dimethylpolysiloxanes/chemistry , Polyurethanes/chemistry , Thoracica/cytology , Zinc Oxide/chemistry , Air/analysis , Animals , Nanoparticles/chemistry , Phase Transition , Surface Properties
3.
Phys Chem Chem Phys ; 18(10): 7114-23, 2016 Mar 14.
Article in English | MEDLINE | ID: mdl-26883913

ABSTRACT

Since the prohibition of tributyltin (TBT)-based antifouling paints in 2008, the development of environmentally compatible and commercially realizable alternatives is a crucial issue. Cost effective fabrication of antifouling paints with desired physical and biocompatible features is simultaneously required and recent developments in the direction of inorganic nanomaterials could play a major role. In the present work, a solvent free polymer/particle-composite coating based on two component polythiourethane (PTU) and tetrapodal shaped ZnO (t-ZnO) nano- and microstructures has been synthesized and studied with respect to mechanical, chemical and biocompatibility properties. Furthermore, antifouling tests have been carried out in artificial seawater tanks. Four different PTU/t-ZnO composites with various t-ZnO filling fractions (0 wt%, 1 wt%, 5 wt%, 10 wt%) were prepared and the corresponding tensile, hardness, and pull-off test results revealed that the composite filled with 5 wt% t-ZnO exhibits the strongest mechanical properties. Surface free energy (SFE) studies using contact angle measurements showed that the SFE value decreases with an increase in t-ZnO filler amounts. The influence of t-ZnO on the polymerization reaction was confirmed by Fourier transform infrared-spectroscopy measurements and thermogravimetric analysis. The immersion tests demonstrated that fouling behavior of the PTU/t-ZnO composite with a 1 wt% t-ZnO filler has been decreased in comparison to pure PTU. The composite with a 5 wt% t-ZnO filler showed almost no biofouling.

4.
Beilstein J Nanotechnol ; 5: 1091-103, 2014.
Article in English | MEDLINE | ID: mdl-25161844

ABSTRACT

The microstructure investigated in this study was inspired by the anisotropic microornamentation of scales from the ventral body side of the California King Snake (Lampropeltis getula californiae). Frictional properties of snake-inspired microstructured polymer surface (SIMPS) made of epoxy resin were characterised in contact with a smooth glass ball by a microtribometer in two perpendicular directions. The SIMPS exhibited a considerable frictional anisotropy: Frictional coefficients measured along the microstructure were about 33% lower than those measured in the opposite direction. Frictional coefficients were compared to those obtained on other types of surface microstructure: (i) smooth ones, (ii) rough ones, and (iii) ones with periodic groove-like microstructures of different dimensions. The results demonstrate the existence of a common pattern of interaction between two general effects that influence friction: (1) molecular interaction depending on real contact area and (2) the mechanical interlocking of both contacting surfaces. The strongest reduction of the frictional coefficient, compared to the smooth reference surface, was observed at a medium range of surface structure dimensions suggesting a trade-off between these two effects.

5.
Beilstein J Nanotechnol ; 5: 83-97, 2014.
Article in English | MEDLINE | ID: mdl-24611129

ABSTRACT

The aim of this study was to understand the influence of microstructures found on ventral scales of the biological model, Lampropeltis getula californiae, the California King Snake, on the friction behavior. For this purpose, we compared snake-inspired anisotropic microstructured surfaces to other microstructured surfaces with isotropic and anisotropic geometry. To exclude that the friction measurements were influenced by physico-chemical variations, all friction measurements were performed on the same epoxy polymer. For frictional measurements a microtribometer was used. Original data were processed by fast Fourier transformation (FFT) with a zero frequency related to the average friction and other peaks resulting from periodic stick-slip behavior. The data showed that the specific ventral surface ornamentation of snakes does not only reduce the frictional coefficient and generate anisotropic frictional properties, but also reduces stick-slip vibrations during sliding, which might be an adaptation to reduce wear. Based on this extensive comparative study of different microstructured polymer samples, it was experimentally demonstrated that the friction-induced stick-slip behavior does not solely depend on the frictional coefficient of the contact pair.

6.
Sci Rep ; 3: 3078, 2013 Oct 29.
Article in English | MEDLINE | ID: mdl-24165663

ABSTRACT

The morphogenesis of the composite epicuticular wax coverage and regeneration ability of the upper wax layer in Nepenthes alata pitchers were studied using a cryo-scanning electron microscopy. Examination of pitchers of different ages revealed six stages in the wax coverage development. In the first stage, wax crystals resemble those found recently in mature pitches of N. dicksoniana and N. ventricosa. Platelets of the upper wax layer originate from broadened tips of stalks during the last developmental stage. Contrary to previous hypotheses, we found that wax crystals of both layers as well as the stalks connecting them are oriented perpendicularly to the pitcher wall. No changes in the height of the wax coverage were detected in 4-8 weeks after mechanical removal of the upper wax layer from mature pitchers on plants. This indicates that the wax coverage in N. alata pitchers is unable to regenerate.


Subject(s)
Tracheophyta/chemistry , Organic Chemicals/chemistry , Regeneration , Tracheophyta/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...