Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Nat Commun ; 13(1): 4435, 2022 07 30.
Article in English | MEDLINE | ID: mdl-35908044

ABSTRACT

Innate lymphoid cells (ILC) promote lung inflammation in asthma through cytokine production. RNA-binding proteins (RBPs) are critical post-transcriptional regulators, although less is known about RBPs in ILC biology. Here, we demonstrate that RNA-binding motif 3 (RBM3) is highly expressed in lung ILCs and is further induced by alarmins TSLP and IL-33. Rbm3-/- and Rbm3-/-Rag2-/- mice exposed to asthma-associated Alternaria allergen develop enhanced eosinophilic lung inflammation and ILC activation. IL-33 stimulation studies in vivo and in vitro show that RBM3 suppressed lung ILC responses. Further, Rbm3-/- ILCs from bone marrow chimeric mice display increased ILC cytokine production suggesting an ILC-intrinsic suppressive function of RBM3. RNA-sequencing of Rbm3-/- lung ILCs demonstrates increased expression of type 2/17 cytokines and cysteinyl leukotriene 1 receptor (CysLT1R). Finally, Rbm3-/-Cyslt1r-/- mice show dependence on CysLT1R for accumulation of ST2+IL-17+ ILCs. Thus, RBM3 intrinsically regulates lung ILCs during allergen-induced type 2 inflammation that is partially dependent on CysLT1R.


Subject(s)
Asthma , Pneumonia , Allergens , Animals , Asthma/metabolism , Cytokines/metabolism , Immunity, Innate , Inflammation/metabolism , Interleukin-33/genetics , Interleukin-33/metabolism , Lung/metabolism , Lymphocytes/metabolism , Mice , Pneumonia/genetics , Pneumonia/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Receptors, Leukotriene
2.
Biomolecules ; 10(3)2020 03 20.
Article in English | MEDLINE | ID: mdl-32244859

ABSTRACT

Connexin 43 (Cx43) is a gap junction protein that assembles at the cell border to form intercellular gap junction (GJ) channels which allow for cell-cell communication by facilitating the rapid transmission of ions and other small molecules between adjacent cells. Non-canonical roles of Cx43, and specifically its C-terminal domain, have been identified in the regulation of Cx43 trafficking, mitochondrial preconditioning, cell proliferation, and tumor formation, yet the mechanisms are still being explored. It was recently identified that up to six truncated isoforms of Cx43 are endogenously produced via alternative translation from internal start codons in addition to full length Cx43, all from the same mRNA produced by the gene GJA1. GJA1-11k, the 11kDa alternatively translated isoform of Cx43, does not have a known role in the formation of gap junction channels, and little is known about its function. Here, we report that over expressed GJA1-11k, unlike the other five truncated isoforms, preferentially localizes to the nucleus in HEK293FT cells and suppresses cell growth by limiting cell cycle progression from the G0/G1 phase to the S phase. Furthermore, these functions are independent of the channel-forming full-length Cx43 isoform. Understanding the apparently unique role of GJA1-11k and its generation in cell cycle regulation may uncover a new target for affecting cell growth in multiple disease models.


Subject(s)
Cell Cycle , Cell Nucleus/metabolism , Connexin 43/biosynthesis , Protein Biosynthesis , Cell Nucleus/genetics , Connexin 43/genetics , HEK293 Cells , Humans , Protein Isoforms/biosynthesis , Protein Isoforms/genetics
3.
J Immunol ; 199(3): 1096-1104, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28667163

ABSTRACT

Asthma is a complex disease that is promoted by dysregulated immunity and the presence of many cytokine and lipid mediators. Despite this, there is a paucity of data demonstrating the combined effects of multiple mediators in asthma pathogenesis. Group 2 innate lymphoid cells (ILC2s) have recently been shown to play important roles in the initiation of allergic inflammation; however, it is unclear whether lipid mediators, such as cysteinyl leukotrienes (CysLTs), which are present in asthma, could further amplify the effects of IL-33 on ILC2 activation and lung inflammation. In this article, we show that airway challenges with the parent CysLT, leukotriene C4 (LTC4), given in combination with low-dose IL-33 to naive wild-type mice, led to synergistic increases in airway Th2 cytokines, eosinophilia, and peribronchial inflammation compared with IL-33 alone. Further, the numbers of proliferating and cytokine-producing lung ILC2s were increased after challenge with both LTC4 and IL-33. Levels of CysLT1R, CysLT2R, and candidate leukotriene E4 receptor P2Y12 mRNAs were increased in ILC2s. The synergistic effect of LTC4 with IL-33 was completely dependent upon CysLT1R, because CysLT1R-/- mice, but not CysLT2R-/- mice, had abrogated responses. Further, CysLTs directly potentiated IL-5 and IL-13 production from purified ILC2s stimulated with IL-33 and resulted in NFAT1 nuclear translocation. Finally, CysLT1R-/- mice had reduced lung eosinophils and ILC2 responses after exposure to the fungal allergen Alternaria alternata Thus, CysLT1R promotes LTC4- and Alternaria-induced ILC2 activation and lung inflammation. These findings suggest that multiple pathways likely exist in asthma to activate ILC2s and propagate inflammatory responses.


Subject(s)
Immunity, Innate , Interleukin-33/immunology , Leukotriene C4/metabolism , Lymphocyte Activation , Lymphocytes/immunology , Pneumonia/immunology , Allergens/immunology , Alternaria/immunology , Animals , Asthma/immunology , Asthma/physiopathology , Cytokines/biosynthesis , Cytokines/immunology , Cytokines/metabolism , Eosinophilia/immunology , Interleukin-33/administration & dosage , Leukotriene C4/immunology , Lung/immunology , Mice , Pneumonia/metabolism , Receptors, Leukotriene/administration & dosage , Receptors, Leukotriene/deficiency , Receptors, Leukotriene/genetics , Receptors, Leukotriene/immunology , Receptors, Purinergic P2Y12/genetics , Receptors, Purinergic P2Y12/immunology , Th2 Cells/immunology
4.
Clin Immunol ; 155(1): 126-135, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25236785

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) have recently been identified in human nasal polyps, but whether numbers of ILC2s differ by polyp endotype or are influenced by corticosteroid use is unknown. Here, we show that eosinophilic nasal polyps contained double the number of ILC2s vs. non-eosinophilic polyps. Polyp ILC2s were also reduced by 50% in patients treated with systemic corticosteroids. Further, using a fungal allergen challenge mouse model, we detected greatly reduced Th2 cytokine-producing and Ki-67+ proliferating lung ILC2s in mice receiving dexamethasone. Finally, ILC2 Annexin V staining revealed extensive apoptosis after corticosteroid treatment in vivo and in vitro. Thus, ILC2s are elevated in the eosinophilic nasal polyp endotype and systemic corticosteroid treatment correlated with reduced polyp ILC2s. Finally, allergen-challenged mice showed reduced ILC2s and increased ILC2 apoptosis after corticosteroid treatment suggesting that ILC2 may be responsive to corticosteroids in eosinophilic respiratory disease.


Subject(s)
Dexamethasone/pharmacology , Lymphocytes/classification , Methylprednisolone/pharmacology , Nasal Polyps/pathology , Prednisone/pharmacology , Adult , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacology , Dexamethasone/administration & dosage , Female , Humans , Male , Methylprednisolone/administration & dosage , Mice , Nasal Polyps/genetics , Prednisone/administration & dosage , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...