Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
J Med Chem ; 66(9): 6013-6024, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37115705

ABSTRACT

X-ray crystallographic fragment screening (XCFS) uses fragment-sized molecules (∼60 to 300 Da) to access binding sites on proteins that may be inaccessible to larger drug-like molecules (>300 Da). Previous studies have shown that fragments containing halogen atoms bind more often to proteins than non-halogenated fragments. Here, we designed the Halo Library containing 46 halogenated fragments (including the "universal fragment" 4-bromopyrazole), a majority of which have been reported to bind to or inhibit one or more targets. The library was screened against the crystals of HIV-1 reverse transcriptase with the drug rilpivirine, yielding an overall hit rate of 26%. Two new binding sites were discovered, and several hot spots were identified. This small library may thus provide a convenient tool for rapidly assessing the feasibility of a target for XCFS, mapping hot spots and cryptic sites, as well as finding fragment binders that can be useful for developing drug leads.


Subject(s)
Drug Discovery , Proteins , Ligands , Models, Molecular , Binding Sites , Proteins/chemistry , Crystallography, X-Ray , Protein Binding
2.
Molecules ; 28(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37049868

ABSTRACT

Human immunodeficiency virus type I (HIV-1) is a retrovirus that infects cells of the host's immune system leading to acquired immunodeficiency syndrome and potentially death. Although treatments are available to prevent its progression, HIV-1 remains a major burden on health resources worldwide. Continued emergence of drug-resistance mutations drives the need for novel drugs that can inhibit HIV-1 replication through new pathways. The viral protein reverse transcriptase (RT) plays a fundamental role in the HIV-1 replication cycle, and multiple approved medications target this enzyme. In this study, fragment-based drug discovery was used to optimize a previously identified hit fragment (compound B-1), which bound RT at a novel site. Three series of compounds were synthesized and evaluated for their HIV-1 RT binding and inhibition. These series were designed to investigate different vectors around the initial hit in an attempt to improve inhibitory activity against RT. Our results show that the 4-position of the core scaffold is important for binding of the fragment to RT, and a lead compound with a cyclopropyl substitution was selected and further investigated. Requirements for binding to the NNRTI-binding pocket (NNIBP) and a novel adjacent site were investigated, with lead compound 27-a minimal but efficient NNRTI-offering a starting site for the development of novel dual NNIBP-Adjacent site inhibitors.


Subject(s)
Acquired Immunodeficiency Syndrome , Anti-HIV Agents , HIV-1 , Humans , Reverse Transcriptase Inhibitors/chemistry , HIV Reverse Transcriptase , Acquired Immunodeficiency Syndrome/drug therapy , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use
3.
Sci Adv ; 8(27): eabn9874, 2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35857464

ABSTRACT

Key proteins of retroviruses and other RNA viruses are translated and subsequently processed from polyprotein precursors by the viral protease (PR). Processing of the HIV Gag-Pol polyprotein yields the HIV structural proteins and enzymes. Structures of the mature enzymes PR, reverse transcriptase (RT), and integrase (IN) aided understanding of catalysis and design of antiretrovirals, but knowledge of the Pol precursor architecture and function before PR cleavage is limited. We developed a system to produce stable HIV-1 Pol and determined its cryo-electron microscopy structure. RT in Pol has a similar arrangement to the mature RT heterodimer, and its dimerization may draw together two PR monomers to activate proteolytic processing. HIV-1 thus may leverage the dimerization interfaces in Pol to regulate assembly and maturation of polyprotein precursors.

4.
Viruses ; 13(8)2021 07 29.
Article in English | MEDLINE | ID: mdl-34452360

ABSTRACT

In most cases, proteolytic processing of the retroviral Pol portion of the Gag-Pol polyprotein precursor produces protease (PR), reverse transcriptase (RT), and integrase (IN). However, foamy viruses (FVs) express Pol separately from Gag and, when Pol is processed, only the IN domain is released. Here, we report a 2.9 Å resolution crystal structure of the mature PR-RT from prototype FV (PFV) that can carry out both proteolytic processing and reverse transcription but is in a configuration not competent for proteolytic or polymerase activity. PFV PR-RT is monomeric and the architecture of PFV PR is similar to one of the subunits of HIV-1 PR, which is a dimer. There is a C-terminal extension of PFV PR (101-145) that consists of two helices which are adjacent to the base of the RT palm subdomain, and anchors PR to RT. The polymerase domain of PFV RT consists of fingers, palm, thumb, and connection subdomains whose spatial arrangements are similar to the p51 subunit of HIV-1 RT. The RNase H and polymerase domains of PFV RT are connected by flexible linkers. Significant spatial and conformational (sub)domain rearrangements are therefore required for nucleic acid binding. The structure of PFV PR-RT provides insights into the conformational maturation of retroviral Pol polyproteins.


Subject(s)
Peptide Hydrolases/chemistry , Polyproteins/chemistry , RNA-Directed DNA Polymerase/chemistry , Spumavirus/chemistry , Crystallization , Peptide Hydrolases/metabolism , Polyproteins/metabolism , RNA-Directed DNA Polymerase/metabolism , Reverse Transcription
5.
Curr Res Struct Biol ; 2: 116-129, 2020.
Article in English | MEDLINE | ID: mdl-33870216

ABSTRACT

The high-resolution crystal structure of HIV-1 reverse transcriptase (RT) bound to a 38-mer DNA hairpin aptamer with low pM affinity was previously described. The high-affinity binding aptamer contained 2'-O-methyl modifications and a seven base-pair GC-rich tract and the structure of the RT-aptamer complex revealed specific contacts between RT and the template strand of the aptamer. Similar to all crystal structures of RT bound to nucleic acid template-primers, the aptamer bound RT with a bend in the duplex DNA. To understand the structural basis for the ultra-high-affinity aptamer binding, an integrative structural biology approach was used. Hydrogen-deuterium exchange coupled to liquid chromatography-mass spectrometry (HDX-MS) was used to examine the structural dynamics of RT alone and in the presence of the DNA aptamer. RT was selectively labeled with 15N to unambiguously identify peptides from each subunit. HDX of unliganded RT shows a mostly stable core. The p66 fingers and thumb subdomains, and the RNase H domain are relatively dynamic. HDX indicates that both the aptamer and a scrambled version significantly stabilize regions of RT that are dynamic in the absence of DNA. No substantial differences in RT dynamics are observed between aptamer and scrambled aptamer binding, despite a large difference in binding affinity. Small-angle X-ray scattering and circular dichroism spectroscopy were used to investigate the aptamer conformation in solution and revealed a pre-bent DNA that possesses both A- and B-form helical character. Both the 2'-O-methyl modifications and the GC tract appear to contribute to an energetically favorable conformation for binding to RT that contributes to the aptamer's ultra-high affinity for RT. The X-ray structure of RT with an RNA/DNA version of the aptamer at 2.8 Å resolution revealed a potential role of the hairpin positioning in affinity. Together, the data suggest that both the 2'-O-methyl modifications and the GC tract contribute to an energetically favorable conformation for high-affinity binding to RT.

6.
ChemMedChem ; 14(12): 1204-1223, 2019 06 18.
Article in English | MEDLINE | ID: mdl-30983160

ABSTRACT

Seasonal influenza infections are associated with an estimated 250-500 000 deaths annually. Resistance to the antiviral M2 ion-channel inhibitors has largely invalidated their clinical utility. Resistance to neuraminidase inhibitors has also been observed in several influenza A virus (IAV) strains. These data have prompted research on inhibitors that target the cap-snatching endonuclease activity of the polymerase acidic protein (PA). Baloxavir marboxil (Xofluza®), recently approved for clinical use, inhibits cap-snatching endonuclease. Resistance to Xofluza® has been reported in both in vitro systems and in the clinic. An X-ray crystallographic screening campaign of a fragment library targeting IAV endonuclease identified 5-chloro-3-hydroxypyridin-2(1H)-one as a bimetal chelating agent at the active site. We have reported the structure-activity relationships for 3-hydroxypyridin-2(1H)-ones and 3-hydroxyquinolin-2(1H)-ones as endonuclease inhibitors. These studies identified two distinct binding modes associated with inhibition of this enzyme that are influenced by the presence of substituents at the 5- and 6-positions of 3-hydroxypyridin-2(1H)-ones. Herein we report the structure-activity relationships associated with various para-substituted 5-phenyl derivatives of 6-(p-fluorophenyl)-3-hydroxypyridin-2(1H)-ones and the effect of using naphthyl, benzyl, and naphthylmethyl groups as alternatives to the p-fluorophenyl substituent on their activity as endonuclease inhibitors.


Subject(s)
Endonucleases/antagonists & inhibitors , Influenza A virus/drug effects , Influenza A virus/enzymology , Pyridones/chemical synthesis , Pyridones/pharmacology , Animals , Antiviral Agents , Crystallography, X-Ray , Dogs , Dose-Response Relationship, Drug , Endonucleases/metabolism , Enzyme Inhibitors , Madin Darby Canine Kidney Cells , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Pyridones/chemistry , Structure-Activity Relationship
7.
Protein Sci ; 28(3): 587-597, 2019 03.
Article in English | MEDLINE | ID: mdl-30499174

ABSTRACT

Stavudine (d4T, 2',3'-didehydro-2',3'-dideoxythymidine) was one of the first chain-terminating nucleoside analogs used to treat HIV infection. We present the first structure of the active, triphosphate form of d4T (d4TTP) bound to a catalytic complex of HIV-1 RT/dsDNA template-primer. We also present a new strategy for disulfide (S-S) chemical cross-linking between N6 of a modified adenine at the second overhang base to I63C in the fingers subdomain of RT. The cross-link site is upstream of the duplex-binding region of RT, however, the structure is very similar to published RT structures with cross-linking to Q258C in the thumb, which suggests that cross-linking at either site does not appreciably perturb the RT/DNA structures. RT has a catalytic maximum at pH 7.5. We determined the X-ray structures of the I63C-RT/dsDNA/d4TTP cross-linked complexes at pH 7, 7.5, 8, 8.5, 9, and 9.5. We found small (~0.5 Å), pH-dependent motions of the fingers subdomain that folds in to form the dNTP-binding pocket. We propose that the pH-activity profile of RT relates to this motion of the fingers. Due to side effects of neuropathy and lipodystrophy, use of d4T has been stopped in most countries, however, chemical modification of d4T might lead to the development of a new class of nucleoside analogs targeting RNA and DNA polymerases.


Subject(s)
HIV Reverse Transcriptase/metabolism , HIV-1/enzymology , Reverse Transcriptase Inhibitors/pharmacology , Stavudine/pharmacology , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Crystallography, X-Ray , DNA/chemistry , DNA/metabolism , HIV Infections/drug therapy , HIV Infections/virology , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/chemistry , HIV-1/drug effects , Humans , Hydrogen-Ion Concentration , Models, Molecular , Protein Conformation/drug effects , Reverse Transcriptase Inhibitors/chemistry , Stavudine/chemistry
8.
J Biol Chem ; 291(45): 23569-23577, 2016 Nov 04.
Article in English | MEDLINE | ID: mdl-27645997

ABSTRACT

HIV-1 integrase (IN) is essential for virus replication and represents an important multifunctional therapeutic target. Recently discovered quinoline-based allosteric IN inhibitors (ALLINIs) potently impair HIV-1 replication and are currently in clinical trials. ALLINIs exhibit a multimodal mechanism of action by inducing aberrant IN multimerization during virion morphogenesis and by competing with IN for binding to its cognate cellular cofactor LEDGF/p75 during early steps of HIV-1 infection. However, quinoline-based ALLINIs impose a low genetic barrier for the evolution of resistant phenotypes, which highlights a need for discovery of second-generation inhibitors. Using crystallographic screening of a library of 971 fragments against the HIV-1 IN catalytic core domain (CCD) followed by a fragment expansion approach, we have identified thiophenecarboxylic acid derivatives that bind at the CCD-CCD dimer interface at the principal lens epithelium-derived growth factor (LEDGF)/p75 binding pocket. The most active derivative (5) inhibited LEDGF/p75-dependent HIV-1 IN activity in vitro with an IC50 of 72 µm and impaired HIV-1 infection of T cells at an EC50 of 36 µm The identified lead compound, with a relatively small molecular weight (221 Da), provides an optimal building block for developing a new class of inhibitors. Furthermore, although structurally distinct thiophenecarboxylic acid derivatives target a similar pocket at the IN dimer interface as the quinoline-based ALLINIs, the lead compound, 5, inhibited IN mutants that confer resistance to quinoline-based compounds. Collectively, our findings provide a plausible path for structure-based development of second-generation ALLINIs.


Subject(s)
HIV Infections/drug therapy , HIV Integrase Inhibitors/chemistry , HIV Integrase Inhibitors/pharmacology , HIV Integrase/metabolism , HIV-1/drug effects , Thiophenes/chemistry , Thiophenes/pharmacology , Allosteric Regulation/drug effects , Carboxylic Acids/chemistry , Carboxylic Acids/pharmacology , Catalytic Domain/drug effects , Crystallography, X-Ray , Drug Discovery , HEK293 Cells , HIV Infections/virology , HIV Integrase/chemistry , Humans , Models, Molecular , Molecular Docking Simulation
9.
IUCrJ ; 3(Pt 1): 51-60, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26870381

ABSTRACT

Through X-ray crystallographic fragment screening, 4-bromopyrazole was discovered to be a 'magic bullet' that is capable of binding at many of the ligand 'hot spots' found in HIV-1 reverse transcriptase (RT). The binding locations can be in pockets that are 'hidden' in the unliganded crystal form, allowing rapid identification of these sites for in silico screening. In addition to hot-spot identification, this ubiquitous yet specific binding provides an avenue for X-ray crystallographic phase determination, which can be a significant bottleneck in the determination of the structures of novel proteins. The anomalous signal from 4-bromopyrazole or 4-iodopyrazole was sufficient to determine the structures of three proteins (HIV-1 RT, influenza A endonuclease and proteinase K) by single-wavelength anomalous dispersion (SAD) from single crystals. Both compounds are inexpensive, readily available, safe and very soluble in DMSO or water, allowing efficient soaking into crystals.

10.
Anal Chem ; 87(7): 4015-4022, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25763479

ABSTRACT

Hydrogen/deuterium exchange (HDX) coupled to mass spectrometry has emerged as a powerful tool for analyzing the conformational dynamics of protein-ligand and protein-protein interactions. Recent advances in instrumentation and methodology have expanded the utility of HDX for the analysis of large and complex proteins; however, asymmetric dimers with shared amino acid sequence present a unique challenge for HDX because assignment of peptides with identical sequence to their subunit of origin remains ambiguous. Here we report the use of differential isotopic labeling to facilitate HDX analysis of multimers using HIV-1 reverse transcriptase (RT) as a model. RT is an asymmetric heterodimer of 51 kDa (p51) and 66 kDa (p66) subunits. The first 440 residues of p51 and p66 are identical. In this study differentially labeled RT was reconstituted from isotopically enriched ((15)N-labeled) p51 and unlabeled p66. To enable detection of (15)N-deuterated RT peptides, the software HDX Workbench was modified to follow a 100% (15)N model. Our results demonstrated that (15)N enrichment of p51 did not affect its conformational dynamics compared to unlabeled p51, but (15)N-labeled p51 did show different conformational dynamics than p66 in the RT heterodimer. Differential HDX-MS of isotopically labeled RT in the presence of the non-nucleoside reverse transcriptase inhibitor (NNRTI) efavirenz (EFV) showed subunit-specific perturbation in the rate of HDX consistent with previously published results and the RT-EFV cocrystal structure.


Subject(s)
Deuterium Exchange Measurement , HIV Reverse Transcriptase/analysis , HIV Reverse Transcriptase/chemistry , Mass Spectrometry , Nitrogen Isotopes
11.
J Med Chem ; 57(19): 8086-98, 2014 Oct 09.
Article in English | MEDLINE | ID: mdl-25225968

ABSTRACT

Seasonal and pandemic influenza outbreaks remain a major human health problem. Inhibition of the endonuclease activity of influenza RNA-dependent RNA polymerase is attractive for the development of new agents for the treatment of influenza infection. Our earlier studies identified a series of 5- and 6-phenyl substituted 3-hydroxypyridin-2(1H)-ones that were effective inhibitors of influenza endonuclease. These agents identified as bimetal chelating ligands binding to the active site of the enzyme. In the present study, several aza analogues of these phenyl substituted 3-hydroxypyridin-2(1H)-one compounds were synthesized and evaluated for their ability to inhibit the endonuclease activity. In contrast to the 4-aza analogue of 6-(4-fluorophenyl)-3-hydroxypyridin-2(1H)-one, the 5-aza analogue (5-hydroxy-2-(4-fluorophenyl)pyrimidin-4(3H)-one) did exhibit significant activity as an endonuclease inhibitor. The 6-aza analogue of 5-(4-fluorophenyl)-3-hydroxypyridin-2(1H)-one (6-(4-fluorophenyl)-4-hydroxypyridazin-3(2H)-one) also retained modest activity as an inhibitor. Several varied 6-phenyl-4-hydroxypyridazin-3(2H)-ones and 2-phenyl-5-hydroxypyrimidin-4(3H)-ones were synthesized and evaluated as endonuclease inhibitors. The SAR observed for these aza analogues are consistent with those previously observed with various phenyl substituted 3-hydroxypyridin-2(1H)-ones.


Subject(s)
Antiviral Agents/chemical synthesis , Aza Compounds/chemical synthesis , Endonucleases/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Influenza A virus/enzymology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Antiviral Agents/pharmacology , Aza Compounds/pharmacology , Enzyme Inhibitors/pharmacology , Influenza A virus/drug effects , Pyridazines/chemical synthesis , Pyridazines/pharmacology , Structure-Activity Relationship
12.
Prog Biophys Mol Biol ; 116(2-3): 92-100, 2014.
Article in English | MEDLINE | ID: mdl-25117499

ABSTRACT

X-ray crystallography has been an under-appreciated screening tool for fragment-based drug discovery due to the perception of low throughput and technical difficulty. Investigators in industry and academia have overcome these challenges by taking advantage of key factors that contribute to a successful crystallographic screening campaign. Efficient cocktail design and soaking methodologies have evolved to maximize throughput while minimizing false positives/negatives. In addition, technical improvements at synchrotron beamlines have dramatically increased data collection rates thus enabling screening on a timescale comparable to other techniques. The combination of available resources and efficient experimental design has resulted in many successful crystallographic screening campaigns. The three-dimensional crystal structure of the bound fragment complexed to its target, a direct result of the screening effort, enables structure-based drug design while revealing insights regarding protein dynamics and function not readily obtained through other experimental approaches. Furthermore, this "chemical interrogation" of the target protein crystals can lead to the identification of useful reagents for improving diffraction resolution or compound solubility.


Subject(s)
Crystallography, X-Ray/methods , Drug Evaluation, Preclinical/methods , Proteins/chemistry , Proteins/metabolism
13.
Bioorg Med Chem ; 21(21): 6435-46, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24055080

ABSTRACT

Inhibition of the endonuclease activity of influenza RNA-dependent RNA polymerase is recognized as an attractive target for the development of new agents for the treatment of influenza infection. Our earlier study employing small molecule fragment screening using a high-resolution crystal form of pandemic 2009 H1N1 influenza A endonuclease domain (PAN) resulted in the identification of 5-chloro-3-hydroxypyridin-2(1H)-one as a bimetal chelating ligand at the active site of the enzyme. In the present study, several phenyl substituted 3-hydroxypyridin-2(1H)-one compounds were synthesized and evaluated for their ability to inhibit the endonuclease activity as measured by a high-throughput fluorescence assay. Two of the more potent compounds in this series, 16 and 18, had IC50 values of 11 and 23nM in the enzymatic assay, respectively. Crystal structures revealed that these compounds had distinct binding modes that chelate the two active site metal ions (M1 and M2) using only two chelating groups. The SAR and the binding mode of these 3-hydroxypyridin-2-ones provide a basis for developing a new class of anti-influenza drugs.


Subject(s)
Endonucleases/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Influenza A Virus, H1N1 Subtype/enzymology , Pyridones/chemistry , Binding Sites , Catalytic Domain , Cell Survival/drug effects , Crystallography, X-Ray , Endonucleases/genetics , Endonucleases/metabolism , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/toxicity , HEK293 Cells , Humans , Protein Binding , Pyridones/chemical synthesis , Pyridones/toxicity , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Structure-Activity Relationship
14.
Bioorg Med Chem Lett ; 23(18): 5209-12, 2013 Sep 15.
Article in English | MEDLINE | ID: mdl-23899617

ABSTRACT

Non-nucleoside inhibitors of HIV-1 reverse transcriptase (HIV-RT) are reported that feature extension into the entrance channel near Glu138. Complexes of the parent anilinylpyrimidine 1 and the morpholinoethoxy analog 2j with HIV-RT have received crystallographic characterization confirming the designs. Measurement of aqueous solubilities of 2j, 2k, the parent triazene 2a, and other NNRTIs demonstrate profound benefits for addition of the morpholinyl substituent.


Subject(s)
Anti-HIV Agents/pharmacology , Enzyme Inhibitors/pharmacology , HIV Reverse Transcriptase/chemistry , Pyrimidines/pharmacology , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/chemistry , Crystallography, X-Ray , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , HIV Reverse Transcriptase/metabolism , HIV-1/drug effects , Models, Molecular , Molecular Structure , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Solubility , Structure-Activity Relationship
15.
ACS Chem Biol ; 8(11): 2501-8, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-23978130

ABSTRACT

Seasonal and pandemic influenza viruses continue to be a leading global health concern. Emerging resistance to the current drugs and the variable efficacy of vaccines underscore the need for developing new flu drugs that will be broadly effective against wild-type and drug-resistant influenza strains. Here, we report the discovery and development of a class of inhibitors targeting the cap-snatching endonuclease activity of the viral polymerase. A high-resolution crystal form of pandemic 2009 H1N1 influenza polymerase acidic protein N-terminal endonuclease domain (PAN) was engineered and used for fragment screening leading to the identification of new chemical scaffolds binding to the PAN active site cleft. During the course of screening, binding of a third metal ion that is potentially relevant to endonuclease activity was detected in the active site cleft of PAN in the presence of a fragment. Using structure-based optimization, we developed a highly potent hydroxypyridinone series of compounds from a fragment hit that defines a new mode of chelation to the active site metal ions. A compound from the series demonstrating promising enzymatic inhibition in a fluorescence-based enzyme assay with an IC50 value of 11 nM was found to have an antiviral activity (EC50) of 11 µM against PR8 H1N1 influenza A in MDCK cells.


Subject(s)
Endonucleases/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Orthomyxoviridae/enzymology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Biological Assay , Catalytic Domain , Cells, Cultured , Chelating Agents/chemistry , Crystallography, X-Ray , Drug Evaluation, Preclinical , Enzyme Inhibitors/pharmacology , Humans , Inhibitory Concentration 50
16.
Nat Chem ; 5(3): 174-81, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23422558

ABSTRACT

The anti-AIDS drug rilpivirine undergoes conformational changes to bind HIV-1 reverse transcriptase (RT), which is an essential enzyme for the replication of HIV. These changes allow it to retain potency against mutations that otherwise would render the enzyme resistant. Here we report that water molecules play an essential role in this binding process. Femtosecond experiments and theory expose the molecular level dynamics of rilpivirine bound to HIV-1 RT. Two nitrile substituents, one on each arm of the drug, are used as vibrational probes of the structural dynamics within the binding pocket. Two-dimensional vibrational echo spectroscopy reveals that one nitrile group is unexpectedly hydrogen-bonded to a mobile water molecule, not identified in previous X-ray structures. Ultrafast nitrile-water dynamics are confirmed by simulations. A higher (1.51 Å) resolution X-ray structure also reveals a water-drug interaction network. Maintenance of a crucial anchoring hydrogen bond may help retain the potency of rilpivirine against pocket mutations despite the structural variations they cause.


Subject(s)
HIV-1/enzymology , Nitriles/chemistry , Nitriles/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/pharmacology , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/chemistry , HIV Reverse Transcriptase/metabolism , HIV-1/genetics , HIV-1/metabolism , Humans , Models, Molecular , Protein Binding , Rilpivirine , Spectroscopy, Fourier Transform Infrared
17.
J Med Chem ; 56(7): 2738-46, 2013 Apr 11.
Article in English | MEDLINE | ID: mdl-23342998

ABSTRACT

HIV-1 reverse transcriptase (RT) undergoes a series of conformational changes during viral replication and is a central target for antiretroviral therapy. The intrinsic flexibility of RT can provide novel allosteric sites for inhibition. Crystals of RT that diffract X-rays to better than 2 Å resolution facilitated the probing of RT for new druggable sites using fragment screening by X-ray crystallography. A total of 775 fragments were grouped into 143 cocktails, which were soaked into crystals of RT in complex with the non-nucleoside drug rilpivirine (TMC278). Seven new sites were discovered, including the Incoming Nucleotide Binding, Knuckles, NNRTI Adjacent, and 399 sites, located in the polymerase region of RT, and the 428, RNase H Primer Grip Adjacent, and 507 sites, located in the RNase H region. Three of these sites (Knuckles, NNRTI Adjacent, and Incoming Nucleotide Binding) are inhibitory and provide opportunities for discovery of new anti-AIDS drugs.


Subject(s)
HIV Reverse Transcriptase/metabolism , Allosteric Site , Base Sequence , Crystallography, X-Ray , DNA Primers , HIV Reverse Transcriptase/chemistry , Models, Molecular , Protein Conformation
18.
ACS Med Chem Lett ; 4(6): 547-50, 2013 Jun 13.
Article in English | MEDLINE | ID: mdl-24936242

ABSTRACT

Several 3-hydroxyquinolin-2(1H)-ones derivatives were synthesized and evaluated as inhibitors of 2009 pandemic H1N1 influenza A endonuclease. All five of the monobrominated 3-hydroxyquinolin(1H)-2-ones derivatives were synthesized. Suzuki-coupling of p-fluorophenylboronic acid with each of these brominated derivatives provided the respective p-fluorophenyl 3-hydroxyquinolin(1H)-2-ones. In addition to 3-hydroxyquinolin-2(1H)-one, its 4-methyl, 4-phenyl, 4-methyl-7-(p-fluorophenyl), and 4-phenyl-7-(p-fluorophenyl) derivatives were also synthesized. Comparative studies on their relative activity revealed that both 6- and 7-(p-fluorophenyl)-3-hydroxyquinolin-2(1H)-one are among the more potent inhibitors of H1N1 influenza A endonuclease. An X-ray crystal structure of 7-(p-fluorophenyl)-3-hydroxyquinolin-2(1H)-one complexed to the influenza endonuclease revealed that this molecule chelates to two metal ions at the active site of the enzyme.

19.
Retrovirology ; 9: 99, 2012 Dec 05.
Article in English | MEDLINE | ID: mdl-23217210

ABSTRACT

BACKGROUND: The recently approved anti-AIDS drug rilpivirine (TMC278, Edurant) is a nonnucleoside inhibitor (NNRTI) that binds to reverse transcriptase (RT) and allosterically blocks the chemical step of DNA synthesis. In contrast to earlier NNRTIs, rilpivirine retains potency against well-characterized, clinically relevant RT mutants. Many structural analogues of rilpivirine are described in the patent literature, but detailed analyses of their antiviral activities have not been published. This work addresses the ability of several of these analogues to inhibit the replication of wild-type (WT) and drug-resistant HIV-1. RESULTS: We used a combination of structure activity relationships and X-ray crystallography to examine NNRTIs that are structurally related to rilpivirine to determine their ability to inhibit WT RT and several clinically relevant RT mutants. Several analogues showed broad activity with only modest losses of potency when challenged with drug-resistant viruses. Structural analyses (crystallography or modeling) of several analogues whose potencies were reduced by RT mutations provide insight into why these compounds were less effective. CONCLUSIONS: Subtle variations between compounds can lead to profound differences in their activities and resistance profiles. Compounds with larger substitutions replacing the pyrimidine and benzonitrile groups of rilpivirine, which reorient pocket residues, tend to lose more activity against the mutants we tested. These results provide a deeper understanding of how rilpivirine and related compounds interact with the NNRTI binding pocket and should facilitate development of novel inhibitors.


Subject(s)
HIV Infections/virology , HIV Reverse Transcriptase/genetics , HIV-1/drug effects , HIV-1/enzymology , Nitriles/pharmacology , Pyrimidines/pharmacology , Reverse Transcriptase Inhibitors/pharmacology , Cell Line , Crystallography , HIV Infections/drug therapy , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/metabolism , HIV-1/genetics , HIV-1/physiology , Humans , Models, Molecular , Molecular Structure , Mutation , Nitriles/chemical synthesis , Nitriles/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Reverse Transcriptase Inhibitors/chemical synthesis , Reverse Transcriptase Inhibitors/chemistry , Rilpivirine
20.
Nat Struct Mol Biol ; 19(2): 253-9, 2012 Jan 22.
Article in English | MEDLINE | ID: mdl-22266819

ABSTRACT

Combinations of nucleoside and non-nucleoside inhibitors (NNRTIs) of HIV-1 reverse transcriptase (RT) are widely used in anti-AIDS therapies. Five NNRTIs, including nevirapine, are clinical drugs; however, the molecular mechanism of inhibition by NNRTIs is not clear. We determined the crystal structures of RT-DNA-nevirapine, RT-DNA, and RT-DNA-AZT-triphosphate complexes at 2.85-, 2.70- and 2.80-Å resolution, respectively. The RT-DNA complex in the crystal could bind nevirapine or AZT-triphosphate but not both. Binding of nevirapine led to opening of the NNRTI-binding pocket. The pocket formation caused shifting of the 3' end of the DNA primer by ~5.5 Å away from its polymerase active site position. Nucleic acid interactions with fingers and palm subdomains were reduced, the dNTP-binding pocket was distorted and the thumb opened up. The structures elucidate complementary roles of nucleoside and non-nucleoside inhibitors in inhibiting RT.


Subject(s)
DNA, Viral/chemistry , DNA, Viral/metabolism , HIV Reverse Transcriptase/chemistry , HIV Reverse Transcriptase/metabolism , Nevirapine/chemistry , Nevirapine/metabolism , Anti-HIV Agents/chemistry , Anti-HIV Agents/metabolism , Crystallography, X-Ray , HIV Reverse Transcriptase/antagonists & inhibitors , Models, Molecular , Nucleic Acid Conformation , Protein Binding , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...