Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3599, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678014

ABSTRACT

Targeting the supportive tumor microenvironment (TME) is an approach of high interest in cancer drug development. However, assessing TME-targeted drug candidates presents a unique set of challenges. We develop a comprehensive screening platform that allows monitoring, quantifying, and ranking drug-induced effects in self-organizing, vascularized tumor spheroids (VTSs). The confrontation of four human-derived cell populations makes it possible to recreate and study complex changes in TME composition and cell-cell interaction. The platform is modular and adaptable for tumor entity or genetic manipulation. Treatment effects are recorded by light sheet fluorescence microscopy and translated by an advanced image analysis routine in processable multi-parametric datasets. The system proved to be robust, with strong interassay reliability. We demonstrate the platform's utility for evaluating TME-targeted antifibrotic and antiangiogenic drugs side-by-side. The platform's output enabled the differential evaluation of even closely related drug candidates according to projected therapeutic needs.


Subject(s)
Breast Neoplasms , Microscopy, Fluorescence , Spheroids, Cellular , Tumor Microenvironment , Humans , Tumor Microenvironment/drug effects , Spheroids, Cellular/drug effects , Spheroids, Cellular/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Microscopy, Fluorescence/methods , Female , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Screening Assays, Antitumor/methods , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/pathology
2.
Biol Direct ; 18(1): 10, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36922848

ABSTRACT

In tumor therapy anti-angiogenic approaches have the potential to increase the efficacy of a wide variety of subsequently or co-administered agents, possibly by improving or normalizing the defective tumor vasculature. Successful implementation of the concept of vascular normalization under anti-angiogenic therapy, however, mandates a detailed understanding of key characteristics and a respective scoring metric that defines an improved vasculature and thus a successful attempt. Here, we show that beyond commonly used parameters such as vessel patency and maturation, anti-angiogenic approaches largely benefit if the complex vascular network with its vessel interconnections is both qualitatively and quantitatively assessed. To gain such deeper insight the organization of vascular networks, we introduce a multi-parametric evaluation of high-resolution angiographic images based on light-sheet fluorescence microscopy images of tumors. We first could pinpoint key correlations between vessel length, straightness and diameter to describe the regular, functional and organized structure observed under physiological conditions. We found that vascular networks from experimental tumors diverted from those in healthy organs, demonstrating the dysfunctionality of the tumor vasculature not only on the level of the individual vessel but also in terms of inadequate organization into larger structures. These parameters proofed effective in scoring the degree of disorganization in different tumor entities, and more importantly in grading a potential reversal under treatment with therapeutic agents. The presented vascular network analysis will support vascular normalization assessment and future optimization of anti-angiogenic therapy.


Subject(s)
Neoplasms , Neovascularization, Pathologic , Humans , Neovascularization, Pathologic/diagnostic imaging , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/pathology , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Neoplasms/pathology , Immunotherapy , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...