Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
ACS Cent Sci ; 9(6): 1150-1159, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37396854

ABSTRACT

The long-term stability of an active-pharmaceutical ingredient and its drug products plays an important role in the licensing process of new pharmaceuticals and for the application of the drug at the patient. It is, however, difficult to predict degradation profiles at early stages of the development of new drugs, making the entire process very time-consuming and costly. Forced mechanochemical degradation under controlled conditions can be used to realistically model long-term degradation processes naturally occurring in drug products, avoiding the use of solvents, thus excluding irrelevant solution-based degradation pathways. We present the forced mechanochemical oxidative degradation of three platelet inhibitor drug products, where the drug products contain thienopyridine. Model studies using clopidogrel hydrogen sulfate (CLP) and its drug formulation Plavix show that the controlled addition of excipients does not affect the nature of the main degradants. Experiments using drug products Ticlopidin-neuraxpharm and Efient show that significant degradation occurs after short reaction times of only 15 min. These results highlight the potential of mechanochemistry for the study of degradation processes of small molecules relevant to the prediction of degradation profiles during the development of new drugs. Furthermore, these data provide exciting insights into the role of mechanochemistry for chemical synthesis in general.

2.
Inorg Chem ; 62(32): 12750-12761, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37506709

ABSTRACT

A series of group 6 heterobimetallic complexes [M0;IrIII] (M = Cr, Mo, W) were synthesized and fully characterized, and the catalytic behavior was studied. The heterobimetallic complex [Mo0;IrIII] (C1) was by far the most active and has shown a considerable synergistic effect, with both metals actively participating in homogeneous carbon dioxide hydrogenation, leading to formate salts. Based on theoretical calculations, the synergistic interaction is due to Pauli repulsion, lowering the transition state and thus enabling higher catalytic activity. The mechanism of both the hydrogenation itself and the synergistic interaction was studied by NMR spectroscopy, kinetic measurements, and theoretical calculations. The homogeneous nature of the reaction was proven using in situ high-pressure (HP) NMR experiments. The same experiments also showed that the octahedral Mo(CO)3P3 moiety of the complex is stable under the reaction conditions. The hydride complex is the resting state because the hydride transfer is the rate-determining step. This is supported by kinetic measurements, in situ HP NMR experiments, and theoretical calculations and is in contrast to the monometallic IrIII counterpart of C1.

3.
J Pharm Biomed Anal ; 234: 115506, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37311375

ABSTRACT

Knowledge of the chemical stability of active pharmaceutical ingredients (APIs) is an important issue in the drug development process. This work describes a methodical approach and a comprehensive protocol for forced photodegradation studies of solid clopidogrel hydrogen sulfate (Clp) under artificial sunlight and indoor irradiation at different relative humidities (RHs) and atmospheres. The results showed that, at low RHs (up to 21%), this API was relatively resistant to simulated sunlight as well as indoor light. However, at higher RHs (between 52% and 100%), more degradation products were formed, and the degradation rate increased with rising RH. The influence of oxygen on the degradation was relatively low, and most degradation reactions proceeded even in humid argon atmosphere. The photodegradation products (DP) were analyzed with two different HPLC systems (LC-UV, LC-UV-MS) and selected impurities were separated by a semi-preparative HPLC and identified by high resolution mass spectrometry (ESI-TOF-MS) and 1H NMR techniques. Based on the obtained results, a light induced degradation pathway could be proposed for Clp in solid state.


Subject(s)
Sunlight , Clopidogrel , Photolysis , Humidity , Chromatography, High Pressure Liquid/methods , Drug Stability
4.
Dalton Trans ; 51(48): 18642-18651, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36448405

ABSTRACT

In here we present the deoxygenation of the chalcogen oxides EO2 (E = S, Se) with R-P(PMe3), so-called phospha-Wittig reagents. The reaction of DABSO (DABCO·2SO2) with R-P(PMe3) (R = Mes*, 2,4,6-tBu3-C6H2; MesTer, 2,6-(2,4,6-Me3-C6H2)2-C6H3) resulted in the formation of thiadiphosphiranes (RP)2S (1:R), while selenadiphosphiranes (RP)2Se (2:R) were afforded with SeO2, both accompanied by the formation of OPMe3. Utilizing the sterically more encumbered DipTer-P(PMe3) (DipTer = 2,6-(2,6-iPr2-C6H3)2-C6H3) a different selectivity was observed and (DipTerP)2Se (2:DipTer) along with [Se(µ-PDipTer)]2 (3:DipTer) were isolated as the Se-containing species in the reaction with SeO2. Interestingly, the reaction with DABSO (or with equimolar ratios of SeO2 at elevated temperatures) gave rise to the formation of the OPMe3-stabilized dioxophosphorane (phosphinidene dioxide) DipTerP(O)2-OPMe3 (4:DipTer) as the main product. This contrasting reactivity can be rationalized by two potential pathways in the reaction with EO2: (i) a Wittig-type pathway and (ii) a pathway involving oxygenation of the phospha-Wittig reagents and release of SO. Thus, phospha-Wittig reagents are shown to be useful synthetic tools for the metal-free deoxygenation of EO2 (E = S, Se).


Subject(s)
Oxides , Indicators and Reagents
5.
Science ; 376(6600): 1433-1441, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35737797

ABSTRACT

Efficient and general methods for the synthesis of amines remain in high demand in the chemical industry. Among the many known processes, catalytic hydrogenation is a cost-effective and industrially proven reaction and currently used to produce a wide array of such compounds. We report a homogeneous nickel catalyst for hydrogenative cross coupling of a range of aromatic, heteroaromatic, and aliphatic nitriles with primary and secondary amines or ammonia. This general hydrogenation protocol is showcased by straightforward and highly selective synthesis of >230 functionalized and structurally diverse amines including pharmaceutically relevant and chiral products, as well as 15N-isotope labeling applications.

6.
Chemistry ; 28(33): e202200854, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35404528

ABSTRACT

The oxidation of silylated hydrazine, (Me3 Si)2 N-N(H)SiMe3 , with silver salts led to the formation of a highly labile hydrazinium-yl radical cation, [(Me3 Si)2 N-N(H)SiMe3 ].+ , at very low temperatures (decomposition > -40 °C). EPR, NMR, DFT and Raman studies revealed the formation of a nitrogen-centered radical cation along the N-N unit of the hydrazine. In the presence of the weakly coordinating anion [Al{OCH(CF3 )2 }4 ]- , crystallization and structural characterization in the solid state were achieved. The hydrazinium-yl radical cation has a significantly shortened N-N bond and a nearly planar N2 Si3 framework, in contrast to the starting material. According to DFT calculations, the shortened N-N bond has a total bond order of 1.5 with a π-bond order of 0.5. The π bond can be regarded as a three-π-electron, two-center bond.

7.
Chem Sci ; 13(4): 985-995, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35211263

ABSTRACT

The chiral ruthenium(ii)bis-SINpEt complex is a versatile and powerful catalyst for the hydrogenation of a broad range of heteroarenes. This study aims to provide understanding of the active form of this privileged catalyst as well as the reaction mechanism, and to identify the factors which control enantioselectivity. To this end we used computational methods and in situ NMR spectroscopy to study the hydrogenation of 2-methylbenzofuran promoted by this system. The high flexibility and conformational freedom of the carbene ligands in this complex lead to the formation of a chiral pocket interacting with the substrate in a "lock-and-key" fashion. The non-covalent stabilization of the substrate in this particular pocket is an exclusive feature of the major enantiomeric pathway and is preserved throughout the mechanism. Substrate coordination leading to the minor enantiomer inside this pocket is inhibited by steric repulsion. Rather, the catalyst exhibits a "flat" interaction surface with the substrate in the minor enantiomer pathway. We probe this concept by computing transition states of the rate determining step of this reaction for a series of different substrates. Our findings open up a new approach for the rational design of chiral catalysts.

8.
J Fungi (Basel) ; 7(12)2021 Dec 18.
Article in English | MEDLINE | ID: mdl-34947075

ABSTRACT

Fusarium spp. are moulds ubiquitously distributed in nature and only occasionally pathogenic for humans. Species of the Fusarium solani complex are the predominant keratitis-inducing pathogens, because they are endowed with proper virulence factors. These fungi can adhere to the cornea creating a biofilm and, with the help of enzymes and cytotoxins, penetrate the cornea. Whereas an intact cornea is hardly able to be invaded by Fusarium spp. in spite of appropriate virulence factors, these opportunistic fungi may profit from predisposing conditions, for example mechanical injuries. This can lead to a progressive course of corneal infection and may finally affect the whole eye up to the need for enucleation. Here, we present and discuss the clinical, microbiological and histopathological aspects of a particular case due to Fusarium tonkinense of the Fusarium solani complex with severe consequences in a patient without any obvious predisposing factors. A broad portfolio of antifungal agents was applied, both topically and systemically as well as two penetrating keratoplasties were performed. The exact determination of the etiologic agent of the fungal infection proved likewise to be very challenging.

9.
Chem Sci ; 12(39): 13101-13119, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34745541

ABSTRACT

Molybdenum(0) complexes with aliphatic aminophosphine pincer ligands have been prepared which are competent for the disproportionation of formic acid, thus representing the first example so far reported of non-noble metal species to catalytically promote such transformation. In general, formic acid disproportionation allows for an alternative access to methyl formate and methanol from renewable resources. MeOH selectivity up to 30% with a TON of 57 could be achieved while operating at atmospheric pressure. Selectivity (37%) and catalyst performance (TON = 69) could be further enhanced when the reaction was performed under hydrogen pressure (60 bars). A plausible mechanism based on experimental evidence is proposed.

10.
Molecules ; 26(19)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34641465

ABSTRACT

A selective transformation of clopidogrel hydrogen sulfate (CLP) by reactive halogen species (HOX) generated from peroxymonosulfate (PMS) and sodium halide (NaX) is described. Other sustainable oxidants as well as different solvents have also been investigated. As result of this study, for each sodium salt the reaction conditions were optimized, and four different degradation products were formed. Three products were halogenated at C-2 on the thiophene ring and have concomitant functional transformation, such as N-oxide in the piperidine group. A halogenated endo-iminium product was also observed. With this condition, a fast preparation of known endo-iminium clopidogrel impurity (new counterion) was reported as well. The progress of the reaction was monitored using nuclear magnetic resonance spectroscopy as an analytical tool and all the products were characterized by 1D-, 2D-NMR and HRMS.


Subject(s)
Clopidogrel/chemistry , Halogenation , Magnetic Resonance Spectroscopy/methods , Oxidants/chemistry , Peroxides/chemistry , Sodium/chemistry , Oxidation-Reduction
11.
Chem Commun (Camb) ; 57(90): 11956-11959, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34704567

ABSTRACT

A method for forced oxidative mechanochemical degradation of active pharmaceutical ingredients (APIs) using clopidogrel hydrogensulfate as a model compound is presented. Considerable and selective formation of degradants occurs already after very short reaction times of less than 15 minutes and the nature of the products is strongly dependent on the used oxidant.


Subject(s)
Pharmaceutical Preparations , Oxidation-Reduction
13.
Klin Monbl Augenheilkd ; 238(10): 1108-1112, 2021 Oct.
Article in English, German | MEDLINE | ID: mdl-34198353

ABSTRACT

Seven new antimycotics are presented that are at different points of development or approval. These substances are mainly first-in-class drugs. They are primarily developed for systemic administration. However, with the support of a pharmacist, the intravenous formulation may be used as eyedrops. In this short review, the activities of the substances against various fungal infections are described. After unsuccessful conventional therapy of fungal eye infections, one of these new substances might be suitable to cure the mycosis.


Subject(s)
Eye Infections, Fungal , Mycoses , Ophthalmology , Antifungal Agents/therapeutic use , Eye Infections, Fungal/drug therapy , Humans , Mycoses/drug therapy
15.
Chem Sci ; 12(47): 15772-15774, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-35003611

ABSTRACT

[This corrects the article DOI: 10.1039/D1SC04181A.].

16.
ACS Catal ; 10(11): 6309-6317, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32551183

ABSTRACT

Recently, chemoselective methods for the hydrogenation of fluorinated, silylated, and borylated arenes have been developed providing direct access to previously unattainable, valuable products. Herein, a comprehensive study on the employed rhodium-cyclic (alkyl)(amino)carbene (CAAC) catalyst precursor is disclosed. Mechanistic experiments, kinetic studies, and surface-spectroscopic methods revealed supported rhodium(0) nanoparticles (NP) as the active catalytic species. Further studies suggest that CAAC-derived modifiers play a key role in determining the chemoselectivity of the hydrogenation of fluorinated arenes, thus offering an avenue for further tuning of the catalytic properties.

17.
Chem Sci ; 10(20): 5319-5325, 2019 May 28.
Article in English | MEDLINE | ID: mdl-31191888

ABSTRACT

The synthesis of an unusual 1-metalla-2,3-cyclobutadiene complex [rac-(ebthi)Ti(Me3SiC3SiMe3)] (rac-ebthi = rac-1,2-ethylene-1,1'-bis(η5-tetrahydroindenyl)), a formal metallacyclic analogue of a non-existent four-membered 1,2-cyclobutadiene, is described. By variation of the cyclopentadienyl ligand of the titanocene precursor it was possible to stabilise this highly exotic compound which selectively reacts with ketones and aldehydes to yield enynes by oxygen transfer to titanium. Analysis of the bonding and electronic structure of the metallacycle shows that the complex is best described as an unusual antiferromagnetically coupled biradicaloid system, possessing a formal Ti(iii) centre coordinated with a monoanionic radical ligand.

18.
Angew Chem Int Ed Engl ; 58(31): 10683-10687, 2019 07 29.
Article in English | MEDLINE | ID: mdl-31125143

ABSTRACT

The stereoselective synthesis of conjugated dienes was realized for the first time via Pd-catalyzed alkoxycarbonylation of easily available 1,3-diynes. Key to success is the utilization of the specific ligand 1,1'-ferrocenediyl-bis(tert-butyl(pyridin-2-yl)phosphine) (L1), which allows this novel transformation to proceed at room temperature. A range of 1,2,3,4-tetrasubstituted conjugated dienes are obtained in this straightforward access in high yields and selectivities. The synthetic utility of the protocol is showcased in the concise synthesis of several important intermediates for construction of natural products rac-cagayanin, rac-galbulin, rac-agastinol, and cannabisin G.

19.
Int Ophthalmol ; 39(6): 1379-1385, 2019 Jun.
Article in English | MEDLINE | ID: mdl-29705891

ABSTRACT

PURPOSE: To report on a wearer of rigid gas-permeable contact lenses with a keratomycosis due to Tintelnotia-a new genus of Phaeosphaeriaceae-treated with terbinafine and polyhexamethylene biguanide. METHODS: Chart review of a patient with fungal keratitis treated additionally with systemic and topical terbinafine 0.25% after symptoms increased under conventional antimycotic therapy with voriconazole. Antifungal susceptibility had been tested in vitro. RESULTS: After starting an additional treatment with systemic and topical terbinafine, the severe corneal infection was sufficiently resolved. The drug was well tolerated without any neurological, dermatological or gastroenterological problems. Terbinafine revealed a marked in vitro antifungal activity of 0.12 µg/ml. The fungus was identified as Tintelnotia destructans. CONCLUSIONS: Terbinafine might be considered as a therapeutic option in severe cases of fungal keratitis refractory to common antifungal therapy.


Subject(s)
Antifungal Agents/therapeutic use , Ascomycota/isolation & purification , Biguanides/therapeutic use , Disinfectants/therapeutic use , Keratitis/microbiology , Terbinafine/therapeutic use , Adult , Humans
20.
J Pharm Biomed Anal ; 162: 41-46, 2019 Jan 05.
Article in English | MEDLINE | ID: mdl-30219598

ABSTRACT

In the development of new pharmaceutical formulations it is important to consider the possible interactions between the active pharmaceutical ingredient (API) and excipients which is a well-known problem. The objective of the work presented here was to investigate such reactions by means of diffusion ordered NMR spectroscopy (DOSY). The known reaction of 5-aminosalicylic acid (5-ASA) and the excipient citric acid was studied. Three reaction products have been verified by DOSY, 1H NMR and HPLC measurements. Despite a poor separation in the DOSY diagram, the reaction products could be assign due to the processing of thoughtful selected parts of the signals. The reaction of 5-ASA with formic acid and benzocaine with dibutyl phthalate was also studied by means of DOSY experiments.


Subject(s)
Chemistry, Pharmaceutical/methods , Citric Acid/chemistry , Excipients/chemistry , Magnetic Resonance Spectroscopy , Mesalamine/chemistry , Technology, Pharmaceutical/methods , Benzocaine/chemistry , Chromatography, High Pressure Liquid , Dibutyl Phthalate/chemistry , Drug Compounding , Formates/chemistry , Proton Magnetic Resonance Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...