Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 13: 804575, 2022.
Article in English | MEDLINE | ID: mdl-35663876

ABSTRACT

Oxygen constitutes one of the strongest factors explaining microbial taxonomic variability in deep-sea sediments. However, deep-sea microbiome studies often lack the spatial resolution to study the oxygen gradient and transition zone beyond the oxic-anoxic dichotomy, thus leaving important questions regarding the microbial response to changing conditions unanswered. Here, we use machine learning and differential abundance analysis on 184 samples from 11 sediment cores retrieved along the Arctic Mid-Ocean Ridge to study how changing oxygen concentrations (1) are predicted by the relative abundance of higher taxa and (2) influence the distribution of individual Operational Taxonomic Units. We find that some of the most abundant classes of microorganisms can be used to classify samples according to oxygen concentration. At the level of Operational Taxonomic Units, however, representatives of common classes are not differentially abundant from high-oxic to low-oxic conditions. This weakened response to changing oxygen concentration suggests that the abundance and prevalence of highly abundant OTUs may be better explained by other variables than oxygen. Our results suggest that a relatively homogeneous microbiome is recruited to the benthos, and that the microbiome then becomes more heterogeneous as oxygen drops below 25 µM. Our analytical approach takes into account the oft-ignored compositional nature of relative abundance data, and provides a framework for extracting biologically meaningful associations from datasets spanning multiple sedimentary cores.

2.
Front Microbiol ; 9: 1570, 2018.
Article in English | MEDLINE | ID: mdl-30061874

ABSTRACT

Hydrothermal systems are excellent natural laboratories for the study of how chemical energy landscapes shape microbial communities. Yet, only a few attempts have been made to quantify relationships between energy availability and microbial community structure in these systems. Here, we have investigated how microbial communities and chemical energy availabilities vary along cross-sections of two hydrothermal chimneys from the Soria Moria Vent Field and the Bruse Vent Field. Both vent fields are located on the Arctic Mid-Ocean Ridge, north of the Jan Mayen Island and the investigated chimneys were venting fluids with markedly different H2S:CH4 ratios. Energy landscapes were inferred from a stepwise in silico mixing of hydrothermal fluids (HFs) with seawater, where Gibbs energies of relevant redox-reactions were calculated at each step. These calculations formed the basis for simulations of relative abundances of primary producers in microbial communities. The simulations were compared with an analysis of 24 samples from chimney wall transects by sequencing of 16S rRNA gene amplicons using 454 sequencing. Patterns in relative abundances of sulfide oxidizing Epsilonproteobacteria and methane oxidizing Methylococcales and ANME-1, were consistent with simulations. However, even though H2 was present in HFs from both chimneys, the observed abundances of putative hydrogen oxidizing anaerobic sulfate reducers (Archaeoglobales) and methanogens (Methanococcales) in the inner parts of the Soria Moria Chimney were considerably higher than predicted by simulations. This indicates biogenic production of H2 in the chimney wall by fermentation, and suggests that biological activity inside the chimneys may modulate energy landscapes significantly. Our results are consistent with the notion that energy landscapes largely shape the distribution of primary producers in hydrothermal systems. Our study demonstrates how a combination of modeling and field observations can be useful in deciphering connections between chemical energy landscapes and metabolic networks within microbial communities.

3.
Int J Syst Evol Microbiol ; 65(12): 4521-4525, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26373292

ABSTRACT

The bacterial strain, IR-2T, was isolated from a microbial mat sampled near a hydrothermal vent in the Greenland Sea. Phylogenetic analysis, based on the 16S rRNA gene, showed that the closest relatives of IR-2T were Ilyobacter tartaricus, Ilyobacter insuetus, Propionigenium modestum and Fusobacterium varium (91 % 16S rRNA gene sequence similarity). The cells of the novel strain were Gram-stain-negative and pleomorphic; changing from long motile rods to non-motile ring structures during the growth cycle. Growth occurred at 20-55 °C (optimally at 48 °C), with 1-6 % (w/v) NaCl (optimally with 2 %), and at pH 5.3-8.0 (optimally at pH 6.0-8.0). The strain had obligate fermentative growth on various sugars and yeast extract. The DNA G+C content of strain IR-2T was 25.7 mol%. The cell sugars comprised mainly ribose, mannose and glucose, while the main polar lipids were glycolipids, phospholipids, phosphatidylglycerol and diphosphatidylglycerol. The fatty acid content of strain IR-2 was dominated by saturated and unsaturated iso-branched or anteiso-branched forms. Strain IR-2 represents a novel genus and species, for which the name Hypnocyclicus thermotrophus gen. nov., sp. nov. is proposed. The type strain is IR-2T ( = DSM 100055 = JCM 30901).


Subject(s)
Fusobacteria/classification , Hydrothermal Vents/microbiology , Phylogeny , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Fusobacteria/genetics , Fusobacteria/isolation & purification , Glycolipids/chemistry , Molecular Sequence Data , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
4.
Front Microbiol ; 4: 299, 2013.
Article in English | MEDLINE | ID: mdl-24109477

ABSTRACT

In marine sediments archaea often constitute a considerable part of the microbial community, of which the Deep Sea Archaeal Group (DSAG) is one of the most predominant. Despite their high abundance no members from this archaeal group have so far been characterized and thus their metabolism is unknown. Here we show that the relative abundance of DSAG marker genes can be correlated with geochemical parameters, allowing prediction of both the potential electron donors and acceptors of these organisms. We estimated the abundance of 16S rRNA genes from Archaea, Bacteria, and DSAG in 52 sediment horizons from two cores collected at the slow-spreading Arctic Mid-Ocean Ridge, using qPCR. The results indicate that members of the DSAG make up the entire archaeal population in certain horizons and constitute up to ~50% of the total microbial community. The quantitative data were correlated to 30 different geophysical and geochemical parameters obtained from the same sediment horizons. We observed a significant correlation between the relative abundance of DSAG 16S rRNA genes and the content of organic carbon (p < 0.0001). Further, significant co-variation with iron oxide, and dissolved iron and manganese (all p < 0.0000), indicated a direct or indirect link to iron and manganese cycling. Neither of these parameters correlated with the relative abundance of archaeal or bacterial 16S rRNA genes, nor did any other major electron donor or acceptor measured. Phylogenetic analysis of DSAG 16S rRNA gene sequences reveals three monophyletic lineages with no apparent habitat-specific distribution. In this study we support the hypothesis that members of the DSAG are tightly linked to the content of organic carbon and directly or indirectly involved in the cycling of iron and/or manganese compounds. Further, we provide a molecular tool to assess their abundance in environmental samples and enrichment cultures.

5.
Proc Natl Acad Sci U S A ; 109(42): E2846-55, 2012 Oct 16.
Article in English | MEDLINE | ID: mdl-23027979

ABSTRACT

Microbial communities and their associated metabolic activity in marine sediments have a profound impact on global biogeochemical cycles. Their composition and structure are attributed to geochemical and physical factors, but finding direct correlations has remained a challenge. Here we show a significant statistical relationship between variation in geochemical composition and prokaryotic community structure within deep-sea sediments. We obtained comprehensive geochemical data from two gravity cores near the hydrothermal vent field Loki's Castle at the Arctic Mid-Ocean Ridge, in the Norwegian-Greenland Sea. Geochemical properties in the rift valley sediments exhibited strong centimeter-scale stratigraphic variability. Microbial populations were profiled by pyrosequencing from 15 sediment horizons (59,364 16S rRNA gene tags), quantitatively assessed by qPCR, and phylogenetically analyzed. Although the same taxa were generally present in all samples, their relative abundances varied substantially among horizons and fluctuated between Bacteria- and Archaea-dominated communities. By independently summarizing covariance structures of the relative abundance data and geochemical data, using principal components analysis, we found a significant correlation between changes in geochemical composition and changes in community structure. Differences in organic carbon and mineralogy shaped the relative abundance of microbial taxa. We used correlations to build hypotheses about energy metabolisms, particularly of the Deep Sea Archaeal Group, specific Deltaproteobacteria, and sediment lineages of potentially anaerobic Marine Group I Archaea. We demonstrate that total prokaryotic community structure can be directly correlated to geochemistry within these sediments, thus enhancing our understanding of biogeochemical cycling and our ability to predict metabolisms of uncultured microbes in deep-sea sediments.


Subject(s)
Archaea/genetics , Bacteria/genetics , Biota , Geologic Sediments/analysis , Geologic Sediments/microbiology , Metagenome/genetics , Arctic Regions , Chromatography, Ion Exchange , Cluster Analysis , DNA Primers/genetics , Oceans and Seas , Phylogeny , Principal Component Analysis , RNA, Ribosomal, 16S/genetics , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA/methods , Species Specificity
6.
Nat Commun ; 1: 126, 2010 Nov 23.
Article in English | MEDLINE | ID: mdl-21119639

ABSTRACT

The Arctic Mid-Ocean Ridge (AMOR) represents one of the most slow-spreading ridge systems on Earth. Previous attempts to locate hydrothermal vent fields and unravel the nature of venting, as well as the provenance of vent fauna at this northern and insular termination of the global ridge system, have been unsuccessful. Here, we report the first discovery of a black smoker vent field at the AMOR. The field is located on the crest of an axial volcanic ridge (AVR) and is associated with an unusually large hydrothermal deposit, which documents that extensive venting and long-lived hydrothermal systems exist at ultraslow-spreading ridges, despite their strongly reduced volcanic activity. The vent field hosts a distinct vent fauna that differs from the fauna to the south along the Mid-Atlantic Ridge. The novel vent fauna seems to have developed by local specialization and by migration of fauna from cold seeps and the Pacific.

SELECTION OF CITATIONS
SEARCH DETAIL
...