Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 56(30): 8776-8779, 2017 07 17.
Article in English | MEDLINE | ID: mdl-28570770

ABSTRACT

Large aqueous ions are interesting because they are useful in materials science (for example to generate thin films) but also because they serve as molecular models for the oxide-aqueous mineral interface where spectroscopy is difficult. Here we show that new clusters of the type M[(µ-OH)2 Co(NH3 )4 ]3 (NO3 )6 (M=Al, Ga) can be synthesized using Werner's century-old cluster as a substitutable framework. We substituted Group 13 metals into the hexol Co[(µ-OH)2 Co(NH3 )4 ]36+ ion to make diamagnetic heterometallic ions. The solid-state structure of the hexol-type derivatives were determined by single-crystal XRD and NMR spectroscopy and confirmed that the solid-state structure persists in solution after dissolution into either D2 O or [D6 ]DMSO. Other compositions besides these diamagnetic ions can undoubtedly be made using a similar approach, which considerably expands the number of stable aqueous heteronuclear ions.

2.
Dalton Trans ; 46(3): 947-955, 2017 Jan 17.
Article in English | MEDLINE | ID: mdl-28009880

ABSTRACT

Rare earth oxide materials, including thin film coatings, are critically important in magnetic, luminescent and microelectric devices, and few substitutes have been discovered with comparable performance. Thin film coatings from solution are almost unknown for rare earth oxides, likely due to their high activity towards hydrolysis which yields poor quality thin films. The hexamer [Ln6(O)(OH)8(H2O)12(NO3)6]2+ is a rare example of a metal-oxo cluster isolated and stabilized without additional supporting organic ligands. Herein we report a new method for both the preparation and stabilization in non-aqueous media, which makes these clusters valuable precursors for solution-processed thin films. Solution characterization (NMR, small-angle X-ray scattering and Raman spectroscopy) in wet organic solvents indicated that the clusters evolve via a fragmentation and reaggregation process. This is especially true for hexamers of the smaller Ln3+-ions: the higher charge density yields higher hydration rates. This process produced an entirely new hexadecameric cluster formulated Y16O3(OH)24(NO3)18(OSMe2)16(OCMe2)2(H2O)4. The new structure represents an intermediate hydrolysis product on the pathway from hexanuclear clusters to metal oxyhydroxide bulk solid. DMSO solvent ligands displace aqua ligands on the cluster and likely explain the additional stability observed for these clusters in organic solvents. The enhanced cluster stability in DMF and DMSO also enables solution-processing methods to create high quality thin films.

SELECTION OF CITATIONS
SEARCH DETAIL
...